You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

358 lines
12 KiB

  1. // Copyright (c) 2017 Personal (Binbin Zhang)
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #ifndef FRONTEND_FBANK_H_
  15. #define FRONTEND_FBANK_H_
  16. #include <cstring>
  17. #include <limits>
  18. #include <random>
  19. #include <utility>
  20. #include <vector>
  21. #include "frontend/fft.h"
  22. #include "glog/logging.h"
  23. namespace wenet {
  24. // This code is based on kaldi Fbank implementation, please see
  25. // https://github.com/kaldi-asr/kaldi/blob/master/src/feat/feature-fbank.cc
  26. static const int kS16AbsMax = 1 << 15;
  27. enum class WindowType {
  28. kPovey = 0,
  29. kHanning,
  30. };
  31. enum class MelType {
  32. kHTK = 0,
  33. kSlaney,
  34. };
  35. enum class NormalizationType {
  36. kKaldi = 0,
  37. kWhisper,
  38. };
  39. enum class LogBase {
  40. kBaseE = 0,
  41. kBase10,
  42. };
  43. class Fbank {
  44. public:
  45. Fbank(int num_bins, int sample_rate, int frame_length, int frame_shift,
  46. float low_freq = 20, bool pre_emphasis = true,
  47. bool scale_input_to_unit = false,
  48. float log_floor = std::numeric_limits<float>::epsilon(),
  49. LogBase log_base = LogBase::kBaseE,
  50. WindowType window_type = WindowType::kPovey,
  51. MelType mel_type = MelType::kHTK,
  52. NormalizationType norm_type = NormalizationType::kKaldi)
  53. : num_bins_(num_bins),
  54. sample_rate_(sample_rate),
  55. frame_length_(frame_length),
  56. frame_shift_(frame_shift),
  57. use_log_(true),
  58. remove_dc_offset_(true),
  59. generator_(0),
  60. distribution_(0, 1.0),
  61. dither_(0.0),
  62. low_freq_(low_freq),
  63. high_freq_(sample_rate / 2),
  64. pre_emphasis_(pre_emphasis),
  65. scale_input_to_unit_(scale_input_to_unit),
  66. log_floor_(log_floor),
  67. log_base_(log_base),
  68. norm_type_(norm_type) {
  69. fft_points_ = UpperPowerOfTwo(frame_length_);
  70. // generate bit reversal table and trigonometric function table
  71. const int fft_points_4 = fft_points_ / 4;
  72. bitrev_.resize(fft_points_);
  73. sintbl_.resize(fft_points_ + fft_points_4);
  74. make_sintbl(fft_points_, sintbl_.data());
  75. make_bitrev(fft_points_, bitrev_.data());
  76. InitMelFilters(mel_type);
  77. InitWindow(window_type);
  78. }
  79. void InitMelFilters(MelType mel_type) {
  80. int num_fft_bins = fft_points_ / 2;
  81. float fft_bin_width = static_cast<float>(sample_rate_) / fft_points_;
  82. float mel_low_freq = MelScale(low_freq_, mel_type);
  83. float mel_high_freq = MelScale(high_freq_, mel_type);
  84. float mel_freq_delta = (mel_high_freq - mel_low_freq) / (num_bins_ + 1);
  85. bins_.resize(num_bins_);
  86. center_freqs_.resize(num_bins_);
  87. for (int bin = 0; bin < num_bins_; ++bin) {
  88. float left_mel = mel_low_freq + bin * mel_freq_delta,
  89. center_mel = mel_low_freq + (bin + 1) * mel_freq_delta,
  90. right_mel = mel_low_freq + (bin + 2) * mel_freq_delta;
  91. center_freqs_[bin] = InverseMelScale(center_mel, mel_type);
  92. std::vector<float> this_bin(num_fft_bins);
  93. int first_index = -1, last_index = -1;
  94. for (int i = 0; i < num_fft_bins; ++i) {
  95. float freq = (fft_bin_width * i); // Center frequency of this fft
  96. // bin.
  97. float mel = MelScale(freq, mel_type);
  98. if (mel > left_mel && mel < right_mel) {
  99. float weight;
  100. if (mel_type == MelType::kHTK) {
  101. if (mel <= center_mel)
  102. weight = (mel - left_mel) / (center_mel - left_mel);
  103. else if (mel > center_mel)
  104. weight = (right_mel - mel) / (right_mel - center_mel);
  105. } else if (mel_type == MelType::kSlaney) {
  106. if (mel <= center_mel) {
  107. weight = (InverseMelScale(mel, mel_type) -
  108. InverseMelScale(left_mel, mel_type)) /
  109. (InverseMelScale(center_mel, mel_type) -
  110. InverseMelScale(left_mel, mel_type));
  111. weight *= 2.0 / (InverseMelScale(right_mel, mel_type) -
  112. InverseMelScale(left_mel, mel_type));
  113. } else if (mel > center_mel) {
  114. weight = (InverseMelScale(right_mel, mel_type) -
  115. InverseMelScale(mel, mel_type)) /
  116. (InverseMelScale(right_mel, mel_type) -
  117. InverseMelScale(center_mel, mel_type));
  118. weight *= 2.0 / (InverseMelScale(right_mel, mel_type) -
  119. InverseMelScale(left_mel, mel_type));
  120. }
  121. }
  122. this_bin[i] = weight;
  123. if (first_index == -1) first_index = i;
  124. last_index = i;
  125. }
  126. }
  127. CHECK(first_index != -1 && last_index >= first_index);
  128. bins_[bin].first = first_index;
  129. int size = last_index + 1 - first_index;
  130. bins_[bin].second.resize(size);
  131. for (int i = 0; i < size; ++i) {
  132. bins_[bin].second[i] = this_bin[first_index + i];
  133. }
  134. }
  135. }
  136. void InitWindow(WindowType window_type) {
  137. window_.resize(frame_length_);
  138. if (window_type == WindowType::kPovey) {
  139. // povey window
  140. double a = M_2PI / (frame_length_ - 1);
  141. for (int i = 0; i < frame_length_; ++i)
  142. window_[i] = pow(0.5 - 0.5 * cos(a * i), 0.85);
  143. } else if (window_type == WindowType::kHanning) {
  144. // periodic hanning window
  145. double a = M_2PI / (frame_length_);
  146. for (int i = 0; i < frame_length_; ++i)
  147. window_[i] = 0.5 * (1.0 - cos(i * a));
  148. }
  149. }
  150. void set_use_log(bool use_log) { use_log_ = use_log; }
  151. void set_remove_dc_offset(bool remove_dc_offset) {
  152. remove_dc_offset_ = remove_dc_offset;
  153. }
  154. void set_dither(float dither) { dither_ = dither; }
  155. int num_bins() const { return num_bins_; }
  156. static inline float InverseMelScale(float mel_freq,
  157. MelType mel_type = MelType::kHTK) {
  158. if (mel_type == MelType::kHTK) {
  159. return 700.0f * (expf(mel_freq / 1127.0f) - 1.0f);
  160. } else if (mel_type == MelType::kSlaney) {
  161. float f_min = 0.0;
  162. float f_sp = 200.0f / 3.0f;
  163. float min_log_hz = 1000.0;
  164. float freq = f_min + f_sp * mel_freq;
  165. float min_log_mel = (min_log_hz - f_min) / f_sp;
  166. float logstep = logf(6.4) / 27.0f;
  167. if (mel_freq >= min_log_mel) {
  168. return min_log_hz * expf(logstep * (mel_freq - min_log_mel));
  169. } else {
  170. return freq;
  171. }
  172. } else {
  173. throw std::invalid_argument("Unsupported mel type!");
  174. }
  175. }
  176. static inline float MelScale(float freq, MelType mel_type = MelType::kHTK) {
  177. if (mel_type == MelType::kHTK) {
  178. return 1127.0f * logf(1.0f + freq / 700.0f);
  179. } else if (mel_type == MelType::kSlaney) {
  180. float f_min = 0.0;
  181. float f_sp = 200.0f / 3.0f;
  182. float min_log_hz = 1000.0;
  183. float mel = (freq - f_min) / f_sp;
  184. float min_log_mel = (min_log_hz - f_min) / f_sp;
  185. float logstep = logf(6.4) / 27.0f;
  186. if (freq >= min_log_hz) {
  187. return min_log_mel + logf(freq / min_log_hz) / logstep;
  188. } else {
  189. return mel;
  190. }
  191. } else {
  192. throw std::invalid_argument("Unsupported mel type!");
  193. }
  194. }
  195. static int UpperPowerOfTwo(int n) {
  196. return static_cast<int>(pow(2, ceil(log(n) / log(2))));
  197. }
  198. // pre emphasis
  199. void PreEmphasis(float coeff, std::vector<float>* data) const {
  200. if (coeff == 0.0) return;
  201. for (int i = data->size() - 1; i > 0; i--)
  202. (*data)[i] -= coeff * (*data)[i - 1];
  203. (*data)[0] -= coeff * (*data)[0];
  204. }
  205. // Apply window on data in place
  206. void ApplyWindow(std::vector<float>* data) const {
  207. CHECK_GE(data->size(), window_.size());
  208. for (size_t i = 0; i < window_.size(); ++i) {
  209. (*data)[i] *= window_[i];
  210. }
  211. }
  212. void WhisperNorm(std::vector<std::vector<float>>* feat,
  213. float max_mel_engery) {
  214. int num_frames = feat->size();
  215. for (int i = 0; i < num_frames; ++i) {
  216. for (int j = 0; j < num_bins_; ++j) {
  217. float energy = (*feat)[i][j];
  218. if (energy < max_mel_engery - 8) energy = max_mel_engery - 8;
  219. energy = (energy + 4.0) / 4.0;
  220. (*feat)[i][j] = energy;
  221. }
  222. }
  223. }
  224. // Compute fbank feat, return num frames
  225. int Compute(const std::vector<float>& wave,
  226. std::vector<std::vector<float>>* feat) {
  227. int num_samples = wave.size();
  228. if (num_samples < frame_length_) return 0;
  229. int num_frames = 1 + ((num_samples - frame_length_) / frame_shift_);
  230. feat->resize(num_frames);
  231. std::vector<float> fft_real(fft_points_, 0), fft_img(fft_points_, 0);
  232. std::vector<float> power(fft_points_ / 2);
  233. float max_mel_engery = std::numeric_limits<float>::min();
  234. for (int i = 0; i < num_frames; ++i) {
  235. std::vector<float> data(wave.data() + i * frame_shift_,
  236. wave.data() + i * frame_shift_ + frame_length_);
  237. if (scale_input_to_unit_) {
  238. for (int j = 0; j < frame_length_; ++j) {
  239. data[j] = data[j] / kS16AbsMax;
  240. }
  241. }
  242. // optional add noise
  243. if (dither_ != 0.0) {
  244. for (size_t j = 0; j < data.size(); ++j)
  245. data[j] += dither_ * distribution_(generator_);
  246. }
  247. // optinal remove dc offset
  248. if (remove_dc_offset_) {
  249. float mean = 0.0;
  250. for (size_t j = 0; j < data.size(); ++j) mean += data[j];
  251. mean /= data.size();
  252. for (size_t j = 0; j < data.size(); ++j) data[j] -= mean;
  253. }
  254. if (pre_emphasis_) {
  255. PreEmphasis(0.97, &data);
  256. }
  257. ApplyWindow(&data);
  258. // copy data to fft_real
  259. memset(fft_img.data(), 0, sizeof(float) * fft_points_);
  260. memset(fft_real.data() + frame_length_, 0,
  261. sizeof(float) * (fft_points_ - frame_length_));
  262. memcpy(fft_real.data(), data.data(), sizeof(float) * frame_length_);
  263. fft(bitrev_.data(), sintbl_.data(), fft_real.data(), fft_img.data(),
  264. fft_points_);
  265. // power
  266. for (int j = 0; j < fft_points_ / 2; ++j) {
  267. power[j] = fft_real[j] * fft_real[j] + fft_img[j] * fft_img[j];
  268. }
  269. (*feat)[i].resize(num_bins_);
  270. // cepstral coefficients, triangle filter array
  271. for (int j = 0; j < num_bins_; ++j) {
  272. float mel_energy = 0.0;
  273. int s = bins_[j].first;
  274. for (size_t k = 0; k < bins_[j].second.size(); ++k) {
  275. mel_energy += bins_[j].second[k] * power[s + k];
  276. }
  277. // optional use log
  278. if (use_log_) {
  279. if (mel_energy < log_floor_) mel_energy = log_floor_;
  280. if (log_base_ == LogBase::kBaseE)
  281. mel_energy = logf(mel_energy);
  282. else if (log_base_ == LogBase::kBase10)
  283. mel_energy = log10(mel_energy);
  284. }
  285. if (max_mel_engery < mel_energy) max_mel_engery = mel_energy;
  286. (*feat)[i][j] = mel_energy;
  287. }
  288. }
  289. if (norm_type_ == NormalizationType::kWhisper)
  290. WhisperNorm(feat, max_mel_engery);
  291. return num_frames;
  292. }
  293. private:
  294. int num_bins_;
  295. int sample_rate_;
  296. int frame_length_, frame_shift_;
  297. int fft_points_;
  298. bool use_log_;
  299. bool remove_dc_offset_;
  300. bool pre_emphasis_;
  301. bool scale_input_to_unit_;
  302. float low_freq_;
  303. float log_floor_;
  304. float high_freq_;
  305. LogBase log_base_;
  306. NormalizationType norm_type_;
  307. std::vector<float> center_freqs_;
  308. std::vector<std::pair<int, std::vector<float>>> bins_;
  309. std::vector<float> window_;
  310. std::default_random_engine generator_;
  311. std::normal_distribution<float> distribution_;
  312. float dither_;
  313. // bit reversal table
  314. std::vector<int> bitrev_;
  315. // trigonometric function table
  316. std::vector<float> sintbl_;
  317. };
  318. } // namespace wenet
  319. #endif // FRONTEND_FBANK_H_