|
|
// decoder/lattice-faster-decoder.cc
// Copyright 2009-2012 Microsoft Corporation Mirko Hannemann
// 2013-2018 Johns Hopkins University (Author: Daniel Povey)
// 2014 Guoguo Chen
// 2018 Zhehuai Chen
// 2021 Binbin Zhang, Zhendong Peng
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <unordered_set>
#include "decoder/lattice-faster-decoder.h"
// #include "lat/lattice-functions.h"
namespace kaldi {
// instantiate this class once for each thing you have to decode.
template <typename FST, typename Token> LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl( const FST& fst, const LatticeFasterDecoderConfig& config, const std::shared_ptr<wenet::ContextGraph>& context_graph) : fst_(&fst), delete_fst_(false), config_(config), num_toks_(0), context_graph_(context_graph) { config.Check(); toks_.SetSize( 1000); // just so on the first frame we do something reasonable.
}
template <typename FST, typename Token> LatticeFasterDecoderTpl<FST, Token>::LatticeFasterDecoderTpl( const LatticeFasterDecoderConfig& config, FST* fst) : fst_(fst), delete_fst_(true), config_(config), num_toks_(0) { config.Check(); toks_.SetSize( 1000); // just so on the first frame we do something reasonable.
}
template <typename FST, typename Token> LatticeFasterDecoderTpl<FST, Token>::~LatticeFasterDecoderTpl() { DeleteElems(toks_.Clear()); ClearActiveTokens(); if (delete_fst_) delete fst_; }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::InitDecoding() { // clean up from last time:
DeleteElems(toks_.Clear()); cost_offsets_.clear(); ClearActiveTokens(); warned_ = false; num_toks_ = 0; decoding_finalized_ = false; final_costs_.clear(); StateId start_state = fst_->Start(); KALDI_ASSERT(start_state != fst::kNoStateId); active_toks_.resize(1); Token* start_tok = new Token(0.0, 0.0, NULL, NULL, NULL); active_toks_[0].toks = start_tok; toks_.Insert(start_state, start_tok); num_toks_++; ProcessNonemitting(config_.beam); }
// Returns true if any kind of traceback is available (not necessarily from
// a final state). It should only very rarely return false; this indicates
// an unusual search error.
template <typename FST, typename Token> bool LatticeFasterDecoderTpl<FST, Token>::Decode( DecodableInterface* decodable) { InitDecoding(); // We use 1-based indexing for frames in this decoder (if you view it in
// terms of features), but note that the decodable object uses zero-based
// numbering, which we have to correct for when we call it.
AdvanceDecoding(decodable); FinalizeDecoding();
// Returns true if we have any kind of traceback available (not necessarily
// to the end state; query ReachedFinal() for that).
return !active_toks_.empty() && active_toks_.back().toks != NULL; }
// Outputs an FST corresponding to the single best path through the lattice.
template <typename FST, typename Token> bool LatticeFasterDecoderTpl<FST, Token>::GetBestPath( Lattice* olat, bool use_final_probs) const { Lattice raw_lat; GetRawLattice(&raw_lat, use_final_probs); ShortestPath(raw_lat, olat); return (olat->NumStates() != 0); }
// Outputs an FST corresponding to the raw, state-level lattice
template <typename FST, typename Token> bool LatticeFasterDecoderTpl<FST, Token>::GetRawLattice( Lattice* ofst, bool use_final_probs) const { typedef LatticeArc Arc; typedef Arc::StateId StateId; typedef Arc::Weight Weight; typedef Arc::Label Label;
// Note: you can't use the old interface (Decode()) if you want to
// get the lattice with use_final_probs = false. You'd have to do
// InitDecoding() and then AdvanceDecoding().
if (decoding_finalized_ && !use_final_probs) KALDI_ERR << "You cannot call FinalizeDecoding() and then call " << "GetRawLattice() with use_final_probs == false";
unordered_map<Token*, BaseFloat> final_costs_local;
const unordered_map<Token*, BaseFloat>& final_costs = (decoding_finalized_ ? final_costs_ : final_costs_local); if (!decoding_finalized_ && use_final_probs) ComputeFinalCosts(&final_costs_local, NULL, NULL);
ofst->DeleteStates(); // num-frames plus one (since frames are one-based, and we have
// an extra frame for the start-state).
int32 num_frames = active_toks_.size() - 1; KALDI_ASSERT(num_frames > 0); const int32 bucket_count = num_toks_ / 2 + 3; unordered_map<Token*, StateId> tok_map(bucket_count); // First create all states.
std::vector<Token*> token_list; for (int32 f = 0; f <= num_frames; f++) { if (active_toks_[f].toks == NULL) { KALDI_WARN << "GetRawLattice: no tokens active on frame " << f << ": not producing lattice.\n"; return false; } TopSortTokens(active_toks_[f].toks, &token_list); for (size_t i = 0; i < token_list.size(); i++) if (token_list[i] != NULL) tok_map[token_list[i]] = ofst->AddState(); } // The next statement sets the start state of the output FST. Because we
// topologically sorted the tokens, state zero must be the start-state.
ofst->SetStart(0);
KALDI_VLOG(4) << "init:" << num_toks_ / 2 + 3 << " buckets:" << tok_map.bucket_count() << " load:" << tok_map.load_factor() << " max:" << tok_map.max_load_factor(); // Now create all arcs.
for (int32 f = 0; f <= num_frames; f++) { for (Token* tok = active_toks_[f].toks; tok != NULL; tok = tok->next) { StateId cur_state = tok_map[tok]; for (ForwardLinkT* l = tok->links; l != NULL; l = l->next) { typename unordered_map<Token*, StateId>::const_iterator iter = tok_map.find(l->next_tok); StateId nextstate = iter->second; KALDI_ASSERT(iter != tok_map.end()); BaseFloat cost_offset = 0.0; if (l->ilabel != 0) { // emitting..
KALDI_ASSERT(f >= 0 && f < cost_offsets_.size()); cost_offset = cost_offsets_[f]; } Arc arc(l->ilabel, l->olabel, Weight(l->graph_cost, l->acoustic_cost - cost_offset), nextstate); ofst->AddArc(cur_state, arc); } if (f == num_frames) { if (use_final_probs && !final_costs.empty()) { typename unordered_map<Token*, BaseFloat>::const_iterator iter = final_costs.find(tok); if (iter != final_costs.end()) ofst->SetFinal(cur_state, LatticeWeight(iter->second, 0)); } else { ofst->SetFinal(cur_state, LatticeWeight::One()); } } } } return (ofst->NumStates() > 0); }
// This function is now deprecated, since now we do determinization from outside
// the LatticeFasterDecoder class. Outputs an FST corresponding to the
// lattice-determinized lattice (one path per word sequence).
template <typename FST, typename Token> bool LatticeFasterDecoderTpl<FST, Token>::GetLattice( CompactLattice* ofst, bool use_final_probs) const { Lattice raw_fst; GetRawLattice(&raw_fst, use_final_probs); Invert(&raw_fst); // make it so word labels are on the input.
// (in phase where we get backward-costs).
fst::ILabelCompare<LatticeArc> ilabel_comp; ArcSort(&raw_fst, ilabel_comp); // sort on ilabel; makes
// lattice-determinization more efficient.
fst::DeterminizeLatticePrunedOptions lat_opts; lat_opts.max_mem = config_.det_opts.max_mem;
DeterminizeLatticePruned(raw_fst, config_.lattice_beam, ofst, lat_opts); raw_fst.DeleteStates(); // Free memory-- raw_fst no longer needed.
Connect(ofst); // Remove unreachable states... there might be
// a small number of these, in some cases.
// Note: if something went wrong and the raw lattice was empty,
// we should still get to this point in the code without warnings or failures.
return (ofst->NumStates() != 0); }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::PossiblyResizeHash(size_t num_toks) { size_t new_sz = static_cast<size_t>(static_cast<BaseFloat>(num_toks) * config_.hash_ratio); if (new_sz > toks_.Size()) { toks_.SetSize(new_sz); } }
/*
A note on the definition of extra_cost.
extra_cost is used in pruning tokens, to save memory.
extra_cost can be thought of as a beta (backward) cost assuming we had set the betas on currently-active tokens to all be the negative of the alphas for those tokens. (So all currently active tokens would be on (tied) best paths).
We can use the extra_cost to accurately prune away tokens that we know will never appear in the lattice. If the extra_cost is greater than the desired lattice beam, the token would provably never appear in the lattice, so we can prune away the token.
(Note: we don't update all the extra_costs every time we update a frame; we only do it every 'config_.prune_interval' frames). */
// FindOrAddToken either locates a token in hash of toks_,
// or if necessary inserts a new, empty token (i.e. with no forward links)
// for the current frame. [note: it's inserted if necessary into hash toks_
// and also into the singly linked list of tokens active on this frame
// (whose head is at active_toks_[frame]).
template <typename FST, typename Token> inline typename LatticeFasterDecoderTpl<FST, Token>::Elem* LatticeFasterDecoderTpl<FST, Token>::FindOrAddToken(StateId state, int32 frame_plus_one, BaseFloat tot_cost, Token* backpointer, bool* changed) { // Returns the Token pointer. Sets "changed" (if non-NULL) to true
// if the token was newly created or the cost changed.
KALDI_ASSERT(frame_plus_one < active_toks_.size()); Token*& toks = active_toks_[frame_plus_one].toks; Elem* e_found = toks_.Insert(state, NULL); if (e_found->val == NULL) { // no such token presently.
const BaseFloat extra_cost = 0.0; // tokens on the currently final frame have zero extra_cost
// as any of them could end up
// on the winning path.
Token* new_tok = new Token(tot_cost, extra_cost, NULL, toks, backpointer); // NULL: no forward links yet
toks = new_tok; num_toks_++; e_found->val = new_tok; if (changed) *changed = true; return e_found; } else { Token* tok = e_found->val; // There is an existing Token for this state.
if (tok->tot_cost > tot_cost) { // replace old token
tok->tot_cost = tot_cost; // SetBackpointer() just does tok->backpointer = backpointer in
// the case where Token == BackpointerToken, else nothing.
tok->SetBackpointer(backpointer); // we don't allocate a new token, the old stays linked in active_toks_
// we only replace the tot_cost
// in the current frame, there are no forward links (and no extra_cost)
// only in ProcessNonemitting we have to delete forward links
// in case we visit a state for the second time
// those forward links, that lead to this replaced token before:
// they remain and will hopefully be pruned later (PruneForwardLinks...)
if (changed) *changed = true; } else { if (changed) *changed = false; } return e_found; } }
// prunes outgoing links for all tokens in active_toks_[frame]
// it's called by PruneActiveTokens
// all links, that have link_extra_cost > lattice_beam are pruned
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinks( int32 frame_plus_one, bool* extra_costs_changed, bool* links_pruned, BaseFloat delta) { // delta is the amount by which the extra_costs must change
// If delta is larger, we'll tend to go back less far
// toward the beginning of the file.
// extra_costs_changed is set to true if extra_cost was changed for any token
// links_pruned is set to true if any link in any token was pruned
*extra_costs_changed = false; *links_pruned = false; KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size()); if (active_toks_[frame_plus_one].toks == NULL) { // empty list; should not happen.
if (!warned_) { KALDI_WARN << "No tokens alive [doing pruning].. warning first " "time only for each utterance\n"; warned_ = true; } }
// We have to iterate until there is no more change, because the links
// are not guaranteed to be in topological order.
bool changed = true; // difference new minus old extra cost >= delta ?
while (changed) { changed = false; for (Token* tok = active_toks_[frame_plus_one].toks; tok != NULL; tok = tok->next) { ForwardLinkT *link, *prev_link = NULL; // will recompute tok_extra_cost for tok.
BaseFloat tok_extra_cost = std::numeric_limits<BaseFloat>::infinity(); // tok_extra_cost is the best (min) of link_extra_cost of outgoing links
for (link = tok->links; link != NULL;) { // See if we need to excise this link...
Token* next_tok = link->next_tok; BaseFloat link_extra_cost = next_tok->extra_cost + ((tok->tot_cost + link->acoustic_cost + link->graph_cost) - next_tok->tot_cost); // difference in brackets is >= 0
// link_exta_cost is the difference in score between the best paths
// through link source state and through link destination state
KALDI_ASSERT(link_extra_cost == link_extra_cost); // check for NaN
// the graph_cost contatins the context score
// if it's the score of the backoff arc, it should be removed.
if (link->context_score < 0) { link_extra_cost += link->context_score; } if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLinkT* next_link = link->next; if (prev_link != NULL) prev_link->next = next_link; else tok->links = next_link; delete link; link = next_link; // advance link but leave prev_link the same.
*links_pruned = true; } else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
// if (link_extra_cost < -0.01)
// KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0; } if (link_extra_cost < tok_extra_cost) tok_extra_cost = link_extra_cost; prev_link = link; // move to next link
link = link->next; } } // for all outgoing links
if (fabs(tok_extra_cost - tok->extra_cost) > delta) changed = true; // difference new minus old is bigger than delta
tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
// infinity indicates, that no forward link survived pruning
} // for all Token on active_toks_[frame]
if (changed) *extra_costs_changed = true;
// Note: it's theoretically possible that aggressive compiler
// optimizations could cause an infinite loop here for small delta and
// high-dynamic-range scores.
} // while changed
}
// PruneForwardLinksFinal is a version of PruneForwardLinks that we call
// on the final frame. If there are final tokens active, it uses
// the final-probs for pruning, otherwise it treats all tokens as final.
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::PruneForwardLinksFinal() { KALDI_ASSERT(!active_toks_.empty()); int32 frame_plus_one = active_toks_.size() - 1;
if (active_toks_[frame_plus_one].toks == NULL) // empty list; should not happen.
KALDI_WARN << "No tokens alive at end of file";
typedef typename unordered_map<Token*, BaseFloat>::const_iterator IterType; ComputeFinalCosts(&final_costs_, &final_relative_cost_, &final_best_cost_); decoding_finalized_ = true; // We call DeleteElems() as a nicety, not because it's really necessary;
// otherwise there would be a time, after calling PruneTokensForFrame() on the
// final frame, when toks_.GetList() or toks_.Clear() would contain pointers
// to nonexistent tokens.
DeleteElems(toks_.Clear());
// Now go through tokens on this frame, pruning forward links... may have to
// iterate a few times until there is no more change, because the list is not
// in topological order. This is a modified version of the code in
// PruneForwardLinks, but here we also take account of the final-probs.
bool changed = true; BaseFloat delta = 1.0e-05; while (changed) { changed = false; for (Token* tok = active_toks_[frame_plus_one].toks; tok != NULL; tok = tok->next) { ForwardLinkT *link, *prev_link = NULL; // will recompute tok_extra_cost. It has a term in it that corresponds
// to the "final-prob", so instead of initializing tok_extra_cost to
// infinity below we set it to the difference between the
// (score+final_prob) of this token, and the best such (score+final_prob).
BaseFloat final_cost; if (final_costs_.empty()) { final_cost = 0.0; } else { IterType iter = final_costs_.find(tok); if (iter != final_costs_.end()) final_cost = iter->second; else final_cost = std::numeric_limits<BaseFloat>::infinity(); } BaseFloat tok_extra_cost = tok->tot_cost + final_cost - final_best_cost_; // tok_extra_cost will be a "min" over either directly being final, or
// being indirectly final through other links, and the loop below may
// decrease its value:
for (link = tok->links; link != NULL;) { // See if we need to excise this link...
Token* next_tok = link->next_tok; BaseFloat link_extra_cost = next_tok->extra_cost + ((tok->tot_cost + link->acoustic_cost + link->graph_cost) - next_tok->tot_cost); if (link_extra_cost > config_.lattice_beam) { // excise link
ForwardLinkT* next_link = link->next; if (prev_link != NULL) prev_link->next = next_link; else tok->links = next_link; delete link; link = next_link; // advance link but leave prev_link the same.
} else { // keep the link and update the tok_extra_cost if needed.
if (link_extra_cost < 0.0) { // this is just a precaution.
// if (link_extra_cost < -0.01)
// KALDI_WARN << "Negative extra_cost: " << link_extra_cost;
link_extra_cost = 0.0; } if (link_extra_cost < tok_extra_cost) tok_extra_cost = link_extra_cost; prev_link = link; link = link->next; } } // prune away tokens worse than lattice_beam above best path. This step
// was not necessary in the non-final case because then, this case
// showed up as having no forward links. Here, the tok_extra_cost has
// an extra component relating to the final-prob.
if (tok_extra_cost > config_.lattice_beam) tok_extra_cost = std::numeric_limits<BaseFloat>::infinity(); // to be pruned in PruneTokensForFrame
if (!ApproxEqual(tok->extra_cost, tok_extra_cost, delta)) changed = true; tok->extra_cost = tok_extra_cost; // will be +infinity or <= lattice_beam_.
} } // while changed
}
template <typename FST, typename Token> BaseFloat LatticeFasterDecoderTpl<FST, Token>::FinalRelativeCost() const { if (!decoding_finalized_) { BaseFloat relative_cost; ComputeFinalCosts(NULL, &relative_cost, NULL); return relative_cost; } else { // we're not allowed to call that function if FinalizeDecoding() has
// been called; return a cached value.
return final_relative_cost_; } }
// Prune away any tokens on this frame that have no forward links.
// [we don't do this in PruneForwardLinks because it would give us
// a problem with dangling pointers].
// It's called by PruneActiveTokens if any forward links have been pruned
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::PruneTokensForFrame( int32 frame_plus_one) { KALDI_ASSERT(frame_plus_one >= 0 && frame_plus_one < active_toks_.size()); Token*& toks = active_toks_[frame_plus_one].toks; if (toks == NULL) KALDI_WARN << "No tokens alive [doing pruning]"; Token *tok, *next_tok, *prev_tok = NULL; for (tok = toks; tok != NULL; tok = next_tok) { next_tok = tok->next; if (tok->extra_cost == std::numeric_limits<BaseFloat>::infinity()) { // token is unreachable from end of graph; (no forward links survived)
// excise tok from list and delete tok.
if (prev_tok != NULL) prev_tok->next = tok->next; else toks = tok->next; delete tok; num_toks_--; } else { // fetch next Token
prev_tok = tok; } } }
// Go backwards through still-alive tokens, pruning them, starting not from
// the current frame (where we want to keep all tokens) but from the frame
// before that. We go backwards through the frames and stop when we reach a
// point where the delta-costs are not changing (and the delta controls when we
// consider a cost to have "not changed").
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::PruneActiveTokens(BaseFloat delta) { int32 cur_frame_plus_one = NumFramesDecoded(); int32 num_toks_begin = num_toks_; // The index "f" below represents a "frame plus one", i.e. you'd have to
// subtract one to get the corresponding index for the decodable object.
for (int32 f = cur_frame_plus_one - 1; f >= 0; f--) { // Reason why we need to prune forward links in this situation:
// (1) we have never pruned them (new TokenList)
// (2) we have not yet pruned the forward links to the next f,
// after any of those tokens have changed their extra_cost.
if (active_toks_[f].must_prune_forward_links) { bool extra_costs_changed = false, links_pruned = false; PruneForwardLinks(f, &extra_costs_changed, &links_pruned, delta); if (extra_costs_changed && f > 0) // any token has changed extra_cost
active_toks_[f - 1].must_prune_forward_links = true; if (links_pruned) // any link was pruned
active_toks_[f].must_prune_tokens = true; active_toks_[f].must_prune_forward_links = false; // job done
} if (f + 1 < cur_frame_plus_one && // except for last f (no forward links)
active_toks_[f + 1].must_prune_tokens) { PruneTokensForFrame(f + 1); active_toks_[f + 1].must_prune_tokens = false; } } KALDI_VLOG(4) << "PruneActiveTokens: pruned tokens from " << num_toks_begin << " to " << num_toks_; }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::ComputeFinalCosts( unordered_map<Token*, BaseFloat>* final_costs, BaseFloat* final_relative_cost, BaseFloat* final_best_cost) const { KALDI_ASSERT(!decoding_finalized_); if (final_costs != NULL) final_costs->clear(); const Elem* final_toks = toks_.GetList(); BaseFloat infinity = std::numeric_limits<BaseFloat>::infinity(); BaseFloat best_cost = infinity, best_cost_with_final = infinity;
while (final_toks != NULL) { StateId state = final_toks->key; Token* tok = final_toks->val; const Elem* next = final_toks->tail; BaseFloat final_cost = fst_->Final(state).Value(); BaseFloat cost = tok->tot_cost, cost_with_final = cost + final_cost; best_cost = std::min(cost, best_cost); best_cost_with_final = std::min(cost_with_final, best_cost_with_final); if (final_costs != NULL && final_cost != infinity) (*final_costs)[tok] = final_cost; final_toks = next; } if (final_relative_cost != NULL) { if (best_cost == infinity && best_cost_with_final == infinity) { // Likely this will only happen if there are no tokens surviving.
// This seems the least bad way to handle it.
*final_relative_cost = infinity; } else { *final_relative_cost = best_cost_with_final - best_cost; } } if (final_best_cost != NULL) { if (best_cost_with_final != infinity) { // final-state exists.
*final_best_cost = best_cost_with_final; } else { // no final-state exists.
*final_best_cost = best_cost; } } }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::AdvanceDecoding( DecodableInterface* decodable, int32 max_num_frames) { if (std::is_same<FST, fst::Fst<fst::StdArc> >::value) { // if the type 'FST' is the FST base-class, then see if the FST type of fst_
// is actually VectorFst or ConstFst. If so, call the AdvanceDecoding()
// function after casting *this to the more specific type.
if (fst_->Type() == "const") { LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token>* this_cast = reinterpret_cast< LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, Token>*>( this); this_cast->AdvanceDecoding(decodable, max_num_frames); return; } else if (fst_->Type() == "vector") { LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token>* this_cast = reinterpret_cast< LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, Token>*>( this); this_cast->AdvanceDecoding(decodable, max_num_frames); return; } }
KALDI_ASSERT(!active_toks_.empty() && !decoding_finalized_ && "You must call InitDecoding() before AdvanceDecoding"); int32 num_frames_ready = decodable->NumFramesReady(); // num_frames_ready must be >= num_frames_decoded, or else
// the number of frames ready must have decreased (which doesn't
// make sense) or the decodable object changed between calls
// (which isn't allowed).
KALDI_ASSERT(num_frames_ready >= NumFramesDecoded()); int32 target_frames_decoded = num_frames_ready; if (max_num_frames >= 0) target_frames_decoded = std::min(target_frames_decoded, NumFramesDecoded() + max_num_frames); while (NumFramesDecoded() < target_frames_decoded) { if (NumFramesDecoded() % config_.prune_interval == 0) { PruneActiveTokens(config_.lattice_beam * config_.prune_scale); } BaseFloat cost_cutoff = ProcessEmitting(decodable); ProcessNonemitting(cost_cutoff); } }
// FinalizeDecoding() is a version of PruneActiveTokens that we call
// (optionally) on the final frame. Takes into account the final-prob of
// tokens. This function used to be called PruneActiveTokensFinal().
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::FinalizeDecoding() { int32 final_frame_plus_one = NumFramesDecoded(); int32 num_toks_begin = num_toks_; if (context_graph_ != nullptr) { UpdateFinalContext(); } // PruneForwardLinksFinal() prunes final frame (with final-probs), and
// sets decoding_finalized_.
PruneForwardLinksFinal(); for (int32 f = final_frame_plus_one - 1; f >= 0; f--) { bool b1, b2; // values not used.
BaseFloat dontcare = 0.0; // delta of zero means we must always update
PruneForwardLinks(f, &b1, &b2, dontcare); PruneTokensForFrame(f + 1); } PruneTokensForFrame(0); KALDI_VLOG(4) << "pruned tokens from " << num_toks_begin << " to " << num_toks_; }
/// Gets the weight cutoff. Also counts the active tokens.
template <typename FST, typename Token> BaseFloat LatticeFasterDecoderTpl<FST, Token>::GetCutoff( Elem* list_head, size_t* tok_count, BaseFloat* adaptive_beam, Elem** best_elem) { BaseFloat best_weight = std::numeric_limits<BaseFloat>::infinity(); // positive == high cost == bad.
size_t count = 0; if (config_.max_active == std::numeric_limits<int32>::max() && config_.min_active == 0) { for (Elem* e = list_head; e != NULL; e = e->tail, count++) { BaseFloat w = static_cast<BaseFloat>(e->val->tot_cost); if (w < best_weight) { best_weight = w; if (best_elem) *best_elem = e; } } if (tok_count != NULL) *tok_count = count; if (adaptive_beam != NULL) *adaptive_beam = config_.beam; return best_weight + config_.beam; } else { tmp_array_.clear(); for (Elem* e = list_head; e != NULL; e = e->tail, count++) { BaseFloat w = e->val->tot_cost; tmp_array_.push_back(w); if (w < best_weight) { best_weight = w; if (best_elem) *best_elem = e; } } if (tok_count != NULL) *tok_count = count;
BaseFloat beam_cutoff = best_weight + config_.beam, min_active_cutoff = std::numeric_limits<BaseFloat>::infinity(), max_active_cutoff = std::numeric_limits<BaseFloat>::infinity();
KALDI_VLOG(6) << "Number of tokens active on frame " << NumFramesDecoded() << " is " << tmp_array_.size();
if (tmp_array_.size() > static_cast<size_t>(config_.max_active)) { std::nth_element(tmp_array_.begin(), tmp_array_.begin() + config_.max_active, tmp_array_.end()); max_active_cutoff = tmp_array_[config_.max_active]; } if (max_active_cutoff < beam_cutoff) { // max_active is tighter than beam.
if (adaptive_beam) *adaptive_beam = max_active_cutoff - best_weight + config_.beam_delta; return max_active_cutoff; } if (tmp_array_.size() > static_cast<size_t>(config_.min_active)) { if (config_.min_active == 0) { min_active_cutoff = best_weight; } else { std::nth_element( tmp_array_.begin(), tmp_array_.begin() + config_.min_active, tmp_array_.size() > static_cast<size_t>(config_.max_active) ? tmp_array_.begin() + config_.max_active : tmp_array_.end()); min_active_cutoff = tmp_array_[config_.min_active]; } } if (min_active_cutoff > beam_cutoff) { // min_active is looser than beam.
if (adaptive_beam) *adaptive_beam = min_active_cutoff - best_weight + config_.beam_delta; return min_active_cutoff; } else { *adaptive_beam = config_.beam; return beam_cutoff; } } }
template <typename FST, typename Token> BaseFloat LatticeFasterDecoderTpl<FST, Token>::ProcessEmitting( DecodableInterface* decodable) { KALDI_ASSERT(active_toks_.size() > 0); int32 frame = active_toks_.size() - 1; // frame is the frame-index
// (zero-based) used to get likelihoods
// from the decodable object.
active_toks_.resize(active_toks_.size() + 1);
Elem* final_toks = toks_.Clear(); // analogous to swapping prev_toks_ / cur_toks_
// in simple-decoder.h. Removes the Elems from
// being indexed in the hash in toks_.
Elem* best_elem = NULL; BaseFloat adaptive_beam; size_t tok_cnt; BaseFloat cur_cutoff = GetCutoff(final_toks, &tok_cnt, &adaptive_beam, &best_elem); KALDI_VLOG(6) << "Adaptive beam on frame " << NumFramesDecoded() << " is " << adaptive_beam;
PossiblyResizeHash( tok_cnt); // This makes sure the hash is always big enough.
BaseFloat next_cutoff = std::numeric_limits<BaseFloat>::infinity(); // pruning "online" before having seen all tokens
BaseFloat cost_offset = 0.0; // Used to keep probabilities in a good
// dynamic range.
// First process the best token to get a hopefully
// reasonably tight bound on the next cutoff. The only
// products of the next block are "next_cutoff" and "cost_offset".
if (best_elem) { StateId state = best_elem->key; Token* tok = best_elem->val; cost_offset = -tok->tot_cost; for (fst::ArcIterator<FST> aiter(*fst_, state); !aiter.Done(); aiter.Next()) { const Arc& arc = aiter.Value(); if (arc.ilabel != 0) { // propagate..
BaseFloat new_weight = arc.weight.Value() + cost_offset - decodable->LogLikelihood(frame, arc.ilabel) + tok->tot_cost; if (state != arc.nextstate) { new_weight += config_.length_penalty; } if (new_weight + adaptive_beam < next_cutoff) next_cutoff = new_weight + adaptive_beam; } } }
// Store the offset on the acoustic likelihoods that we're applying.
// Could just do cost_offsets_.push_back(cost_offset), but we
// do it this way as it's more robust to future code changes.
cost_offsets_.resize(frame + 1, 0.0); cost_offsets_[frame] = cost_offset;
// the tokens are now owned here, in final_toks, and the hash is empty.
// 'owned' is a complex thing here; the point is we need to call DeleteElem
// on each elem 'e' to let toks_ know we're done with them.
for (Elem *e = final_toks, *e_tail; e != NULL; e = e_tail) { // loop this way because we delete "e" as we go.
StateId state = e->key; Token* tok = e->val; if (tok->tot_cost <= cur_cutoff) { for (fst::ArcIterator<FST> aiter(*fst_, state); !aiter.Done(); aiter.Next()) { const Arc& arc = aiter.Value(); if (arc.ilabel != 0) { // propagate..
BaseFloat ac_cost = cost_offset - decodable->LogLikelihood(frame, arc.ilabel), graph_cost = arc.weight.Value(); if (state != arc.nextstate) { graph_cost += config_.length_penalty; } BaseFloat cur_cost = tok->tot_cost, tot_cost = cur_cost + ac_cost + graph_cost; if (tot_cost >= next_cutoff) continue; else if (tot_cost + adaptive_beam < next_cutoff) next_cutoff = tot_cost + adaptive_beam; // prune by best current token
// Note: the frame indexes into active_toks_ are one-based,
// hence the + 1.
Elem* e_next = FindOrAddToken(arc.nextstate, frame + 1, tot_cost, tok, NULL); // NULL: no change indicator needed
float context_score = 0; int context_state = 0; if (context_graph_ != nullptr) { // Current ilabel is blank or current ilabel equals to previous.
if (arc.ilabel - 1 == 0 || arc.ilabel == tok->ilabel) { context_state = tok->context_state; } else { context_state = context_graph_->GetNextState( tok->context_state, arc.ilabel - 1, &context_score); graph_cost -= context_score; tot_cost -= context_score; } }
// Add ForwardLink from tok to next_tok (put on head of list
// tok->links)
tok->links = new ForwardLinkT(e_next->val, arc.ilabel, arc.olabel, graph_cost, ac_cost, tok->links); if (context_graph_ != nullptr) { tok->links->context_score = context_score; } } } // for all arcs
} e_tail = e->tail; toks_.Delete(e); // delete Elem
} return next_cutoff; }
// static inline
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::DeleteForwardLinks(Token* tok) { ForwardLinkT *l = tok->links, *m; while (l != NULL) { m = l->next; delete l; l = m; } tok->links = NULL; }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::ProcessNonemitting(BaseFloat cutoff) { KALDI_ASSERT(!active_toks_.empty()); int32 frame = static_cast<int32>(active_toks_.size()) - 2; // Note: "frame" is the time-index we just processed, or -1 if
// we are processing the nonemitting transitions before the
// first frame (called from InitDecoding()).
// Processes nonemitting arcs for one frame. Propagates within toks_.
// Note-- this queue structure is not very optimal as
// it may cause us to process states unnecessarily (e.g. more than once),
// but in the baseline code, turning this vector into a set to fix this
// problem did not improve overall speed.
KALDI_ASSERT(queue_.empty());
if (toks_.GetList() == NULL) { if (!warned_) { KALDI_WARN << "Error, no surviving tokens: frame is " << frame; warned_ = true; } }
int before = 0, after = 0; for (const Elem* e = toks_.GetList(); e != NULL; e = e->tail) { StateId state = e->key; if (fst_->NumInputEpsilons(state) != 0) queue_.push_back(e); ++before; }
while (!queue_.empty()) { ++after; const Elem* e = queue_.back(); queue_.pop_back();
StateId state = e->key; Token* tok = e->val; // would segfault if e is a NULL pointer but this can't happen.
BaseFloat cur_cost = tok->tot_cost; if (cur_cost >= cutoff) // Don't bother processing successors.
continue; // If "tok" has any existing forward links, delete them,
// because we're about to regenerate them. This is a kind
// of non-optimality (remember, this is the simple decoder),
// but since most states are emitting it's not a huge issue.
DeleteForwardLinks(tok); // necessary when re-visiting
tok->links = NULL; for (fst::ArcIterator<FST> aiter(*fst_, state); !aiter.Done(); aiter.Next()) { const Arc& arc = aiter.Value(); if (arc.ilabel == 0) { // propagate nonemitting only...
BaseFloat graph_cost = arc.weight.Value(), tot_cost = cur_cost + graph_cost; if (tot_cost < cutoff) { bool changed; Elem* e_new = FindOrAddToken(arc.nextstate, frame + 1, tot_cost, tok, &changed);
if (context_graph_ != nullptr && changed) { e_new->val->context_state = tok->context_state; }
tok->links = new ForwardLinkT(e_new->val, 0, arc.olabel, graph_cost, 0, tok->links);
// "changed" tells us whether the new token has a different
// cost from before, or is new [if so, add into queue].
if (changed && fst_->NumInputEpsilons(arc.nextstate) != 0) queue_.push_back(e_new); } } } // for all arcs
} // while queue not empty
KALDI_VLOG(3) << "ProcessNonemitting " << before << " " << after; }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::DeleteElems(Elem* list) { for (Elem *e = list, *e_tail; e != NULL; e = e_tail) { e_tail = e->tail; toks_.Delete(e); } }
template <typename FST, typename Token> void LatticeFasterDecoderTpl< FST, Token>::ClearActiveTokens() { // a cleanup routine, at utt end/begin
for (size_t i = 0; i < active_toks_.size(); i++) { // Delete all tokens alive on this frame, and any forward
// links they may have.
for (Token* tok = active_toks_[i].toks; tok != NULL;) { DeleteForwardLinks(tok); Token* next_tok = tok->next; delete tok; num_toks_--; tok = next_tok; } } active_toks_.clear(); KALDI_ASSERT(num_toks_ == 0); }
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::UpdateFinalContext() { int frame = active_toks_.size() - 1; for (Token* tok = active_toks_[frame].toks; tok != nullptr; tok = tok->next) { if (tok->context_state > 0 && !context_graph_->IsFinalState(tok->context_state)) { int context_state = tok->context_state; float context_score = 0; tok->context_state = context_graph_->GetNextState( context_state, fst::kNoLabel, &context_score); tok->tot_cost -= context_score; if (nullptr != tok->links) { tok->links->context_score = context_score; } KALDI_VLOG(2) << "Final context state " << context_state << " context_score " << context_score; } } }
// static
template <typename FST, typename Token> void LatticeFasterDecoderTpl<FST, Token>::TopSortTokens( Token* tok_list, std::vector<Token*>* topsorted_list) { unordered_map<Token*, int32> token2pos; using std::unordered_set; typedef typename unordered_map<Token*, int32>::iterator IterType; int32 num_toks = 0; for (Token* tok = tok_list; tok != NULL; tok = tok->next) num_toks++; int32 cur_pos = 0; // We assign the tokens numbers num_toks - 1, ... , 2, 1, 0.
// This is likely to be in closer to topological order than
// if we had given them ascending order, because of the way
// new tokens are put at the front of the list.
for (Token* tok = tok_list; tok != NULL; tok = tok->next) token2pos[tok] = num_toks - ++cur_pos;
unordered_set<Token*> reprocess;
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter) { Token* tok = iter->first; int32 pos = iter->second; for (ForwardLinkT* link = tok->links; link != NULL; link = link->next) { if (link->ilabel == 0) { // We only need to consider epsilon links, since non-epsilon links
// transition between frames and this function only needs to sort a list
// of tokens from a single frame.
IterType following_iter = token2pos.find(link->next_tok); if (following_iter != token2pos.end()) { // another token on this
// frame, so must consider it.
int32 next_pos = following_iter->second; if (next_pos < pos) { // reassign the position of the next Token.
following_iter->second = cur_pos++; reprocess.insert(link->next_tok); } } } } // In case we had previously assigned this token to be reprocessed, we can
// erase it from that set because it's "happy now" (we just processed it).
reprocess.erase(tok); }
size_t max_loop = 1000000, loop_count; // max_loop is to detect epsilon cycles.
for (loop_count = 0; !reprocess.empty() && loop_count < max_loop; ++loop_count) { std::vector<Token*> reprocess_vec; for (typename unordered_set<Token*>::iterator iter = reprocess.begin(); iter != reprocess.end(); ++iter) reprocess_vec.push_back(*iter); reprocess.clear(); for (typename std::vector<Token*>::iterator iter = reprocess_vec.begin(); iter != reprocess_vec.end(); ++iter) { Token* tok = *iter; int32 pos = token2pos[tok]; // Repeat the processing we did above (for comments, see above).
for (ForwardLinkT* link = tok->links; link != NULL; link = link->next) { if (link->ilabel == 0) { IterType following_iter = token2pos.find(link->next_tok); if (following_iter != token2pos.end()) { int32 next_pos = following_iter->second; if (next_pos < pos) { following_iter->second = cur_pos++; reprocess.insert(link->next_tok); } } } } } } KALDI_ASSERT(loop_count < max_loop && "Epsilon loops exist in your decoding " "graph (this is not allowed!)");
topsorted_list->clear(); topsorted_list->resize(cur_pos, NULL); // create a list with NULLs in between.
for (IterType iter = token2pos.begin(); iter != token2pos.end(); ++iter) (*topsorted_list)[iter->second] = iter->first; }
// Instantiate the template for the combination of token types and FST types
// that we'll need.
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc>, decoder::StdToken>; template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::StdToken>; template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::StdToken>;
// template class LatticeFasterDecoderTpl<fst::ConstGrammarFst,
// decoder::StdToken>; template class
// LatticeFasterDecoderTpl<fst::VectorGrammarFst, decoder::StdToken>;
template class LatticeFasterDecoderTpl<fst::Fst<fst::StdArc>, decoder::BackpointerToken>; template class LatticeFasterDecoderTpl<fst::VectorFst<fst::StdArc>, decoder::BackpointerToken>; template class LatticeFasterDecoderTpl<fst::ConstFst<fst::StdArc>, decoder::BackpointerToken>; // template class LatticeFasterDecoderTpl<fst::ConstGrammarFst,
// decoder::BackpointerToken>; template class
// LatticeFasterDecoderTpl<fst::VectorGrammarFst, decoder::BackpointerToken>;
} // end namespace kaldi.
|