|
|
// util/stl-utils.h
// Copyright 2009-2011 Microsoft Corporation; Saarland University
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_UTIL_STL_UTILS_H_
#define KALDI_UTIL_STL_UTILS_H_
#include <algorithm>
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using std::unordered_map; using std::unordered_set;
#include "base/kaldi-common.h"
namespace kaldi {
/// Sorts and uniq's (removes duplicates) from a vector.
template <typename T> inline void SortAndUniq(std::vector<T>* vec) { std::sort(vec->begin(), vec->end()); vec->erase(std::unique(vec->begin(), vec->end()), vec->end()); }
/// Returns true if the vector is sorted.
template <typename T> inline bool IsSorted(const std::vector<T>& vec) { typename std::vector<T>::const_iterator iter = vec.begin(), end = vec.end(); if (iter == end) return true; while (1) { typename std::vector<T>::const_iterator next_iter = iter; ++next_iter; if (next_iter == end) return true; // end of loop and nothing out of order
if (*next_iter < *iter) return false; iter = next_iter; } }
/// Returns true if the vector is sorted and contains each element
/// only once.
template <typename T> inline bool IsSortedAndUniq(const std::vector<T>& vec) { typename std::vector<T>::const_iterator iter = vec.begin(), end = vec.end(); if (iter == end) return true; while (1) { typename std::vector<T>::const_iterator next_iter = iter; ++next_iter; if (next_iter == end) return true; // end of loop and nothing out of order
if (*next_iter <= *iter) return false; iter = next_iter; } }
/// Removes duplicate elements from a sorted list.
template <typename T> inline void Uniq(std::vector<T>* vec) { // must be already sorted.
KALDI_PARANOID_ASSERT(IsSorted(*vec)); KALDI_ASSERT(vec); vec->erase(std::unique(vec->begin(), vec->end()), vec->end()); }
/// Copies the elements of a set to a vector.
template <class T> void CopySetToVector(const std::set<T>& s, std::vector<T>* v) { // copies members of s into v, in sorted order from lowest to highest
// (because the set was in sorted order).
KALDI_ASSERT(v != NULL); v->resize(s.size()); typename std::set<T>::const_iterator siter = s.begin(), send = s.end(); typename std::vector<T>::iterator viter = v->begin(); for (; siter != send; ++siter, ++viter) { *viter = *siter; } }
template <class T> void CopySetToVector(const unordered_set<T>& s, std::vector<T>* v) { KALDI_ASSERT(v != NULL); v->resize(s.size()); typename unordered_set<T>::const_iterator siter = s.begin(), send = s.end(); typename std::vector<T>::iterator viter = v->begin(); for (; siter != send; ++siter, ++viter) { *viter = *siter; } }
/// Copies the (key, value) pairs in a map to a vector of pairs.
template <class A, class B> void CopyMapToVector(const std::map<A, B>& m, std::vector<std::pair<A, B> >* v) { KALDI_ASSERT(v != NULL); v->resize(m.size()); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); typename std::vector<std::pair<A, B> >::iterator viter = v->begin(); for (; miter != mend; ++miter, ++viter) { *viter = std::make_pair(miter->first, miter->second); // do it like this because of const casting.
} }
/// Copies the keys in a map to a vector.
template <class A, class B> void CopyMapKeysToVector(const std::map<A, B>& m, std::vector<A>* v) { KALDI_ASSERT(v != NULL); v->resize(m.size()); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); typename std::vector<A>::iterator viter = v->begin(); for (; miter != mend; ++miter, ++viter) { *viter = miter->first; } }
/// Copies the values in a map to a vector.
template <class A, class B> void CopyMapValuesToVector(const std::map<A, B>& m, std::vector<B>* v) { KALDI_ASSERT(v != NULL); v->resize(m.size()); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); typename std::vector<B>::iterator viter = v->begin(); for (; miter != mend; ++miter, ++viter) { *viter = miter->second; } }
/// Copies the keys in a map to a set.
template <class A, class B> void CopyMapKeysToSet(const std::map<A, B>& m, std::set<A>* s) { KALDI_ASSERT(s != NULL); s->clear(); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); for (; miter != mend; ++miter) { s->insert(s->end(), miter->first); } }
/// Copies the values in a map to a set.
template <class A, class B> void CopyMapValuesToSet(const std::map<A, B>& m, std::set<B>* s) { KALDI_ASSERT(s != NULL); s->clear(); typename std::map<A, B>::const_iterator miter = m.begin(), mend = m.end(); for (; miter != mend; ++miter) s->insert(s->end(), miter->second); }
/// Copies the contents of a vector to a set.
template <class A> void CopyVectorToSet(const std::vector<A>& v, std::set<A>* s) { KALDI_ASSERT(s != NULL); s->clear(); typename std::vector<A>::const_iterator iter = v.begin(), end = v.end(); for (; iter != end; ++iter) s->insert(s->end(), *iter); // s->end() is a hint in case v was sorted. will work regardless.
}
/// Deletes any non-NULL pointers in the vector v, and sets
/// the corresponding entries of v to NULL
template <class A> void DeletePointers(std::vector<A*>* v) { KALDI_ASSERT(v != NULL); typename std::vector<A*>::iterator iter = v->begin(), end = v->end(); for (; iter != end; ++iter) { if (*iter != NULL) { delete *iter; *iter = NULL; // set to NULL for extra safety.
} } }
/// Returns true if the vector of pointers contains NULL pointers.
template <class A> bool ContainsNullPointers(const std::vector<A*>& v) { typename std::vector<A*>::const_iterator iter = v.begin(), end = v.end(); for (; iter != end; ++iter) if (*iter == static_cast<A*>(NULL)) return true; return false; }
/// Copies the contents a vector of one type to a vector
/// of another type.
template <typename A, typename B> void CopyVectorToVector(const std::vector<A>& vec_in, std::vector<B>* vec_out) { KALDI_ASSERT(vec_out != NULL); vec_out->resize(vec_in.size()); for (size_t i = 0; i < vec_in.size(); i++) (*vec_out)[i] = static_cast<B>(vec_in[i]); }
/// A hashing function-object for vectors.
template <typename Int> struct VectorHasher { // hashing function for vector<Int>.
size_t operator()(const std::vector<Int>& x) const noexcept { size_t ans = 0; typename std::vector<Int>::const_iterator iter = x.begin(), end = x.end(); for (; iter != end; ++iter) { ans *= kPrime; ans += *iter; } return ans; } VectorHasher() { // Check we're instantiated with an integer type.
KALDI_ASSERT_IS_INTEGER_TYPE(Int); }
private: static const int kPrime = 7853; };
/// A hashing function-object for pairs of ints
template <typename Int1, typename Int2 = Int1> struct PairHasher { // hashing function for pair<int>
size_t operator()(const std::pair<Int1, Int2>& x) const noexcept { // 7853 was chosen at random from a list of primes.
return x.first + x.second * 7853; } PairHasher() { // Check we're instantiated with an integer type.
KALDI_ASSERT_IS_INTEGER_TYPE(Int1); KALDI_ASSERT_IS_INTEGER_TYPE(Int2); } };
/// A hashing function object for strings.
struct StringHasher { // hashing function for std::string
size_t operator()(const std::string& str) const noexcept { size_t ans = 0, len = str.length(); const char *c = str.c_str(), *end = c + len; for (; c != end; c++) { ans *= kPrime; ans += *c; } return ans; }
private: static const int kPrime = 7853; };
/// Reverses the contents of a vector.
template <typename T> inline void ReverseVector(std::vector<T>* vec) { KALDI_ASSERT(vec != NULL); size_t sz = vec->size(); for (size_t i = 0; i < sz / 2; i++) std::swap((*vec)[i], (*vec)[sz - 1 - i]); }
/// Comparator object for pairs that compares only the first pair.
template <class A, class B> struct CompareFirstMemberOfPair { inline bool operator()(const std::pair<A, B>& p1, const std::pair<A, B>& p2) { return p1.first < p2.first; } };
/// For a vector of pair<I, F> where I is an integer and F a floating-point or
/// integer type, this function sorts a vector of type vector<pair<I, F> > on
/// the I value and then merges elements with equal I values, summing these over
/// the F component and then removing any F component with zero value. This
/// is for where the vector of pairs represents a map from the integer to float
/// component, with an "adding" type of semantics for combining the elements.
template <typename I, typename F> inline void MergePairVectorSumming(std::vector<std::pair<I, F> >* vec) { KALDI_ASSERT_IS_INTEGER_TYPE(I); CompareFirstMemberOfPair<I, F> c; std::sort(vec->begin(), vec->end(), c); // sort on 1st element.
typename std::vector<std::pair<I, F> >::iterator out = vec->begin(), in = vec->begin(), end = vec->end(); // special case: while there is nothing to be changed, skip over
// initial input (avoids unnecessary copying).
while (in + 1 < end && in[0].first != in[1].first && in[0].second != 0.0) { in++; out++; } while (in < end) { // We reach this point only at the first element of
// each stretch of identical .first elements.
*out = *in; ++in; while (in < end && in->first == out->first) { out->second += in->second; // this is the merge operation.
++in; } if (out->second != static_cast<F>(0)) // Don't keep zero elements.
out++; } vec->erase(out, end); }
} // namespace kaldi
#endif // KALDI_UTIL_STL_UTILS_H_
|