|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// LogWeight along with sign information that represents the value X in the
// linear domain as <sign(X), -ln(|X|)>
//
// The sign is a TropicalWeight:
// positive, TropicalWeight.Value() > 0.0, recommended value 1.0
// negative, TropicalWeight.Value() <= 0.0, recommended value -1.0
#ifndef FST_SIGNED_LOG_WEIGHT_H_
#define FST_SIGNED_LOG_WEIGHT_H_
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <random>
#include <string>
#include <fst/log.h>
#include <fst/float-weight.h>
#include <fst/pair-weight.h>
#include <fst/product-weight.h>
#include <fst/util.h>
#include <fst/weight.h>
namespace fst { template <class T> class SignedLogWeightTpl : public PairWeight<TropicalWeight, LogWeightTpl<T>> { public: using W1 = TropicalWeight; using W2 = LogWeightTpl<T>; using ReverseWeight = SignedLogWeightTpl;
using PairWeight<W1, W2>::Value1; using PairWeight<W1, W2>::Value2;
SignedLogWeightTpl() noexcept : PairWeight<W1, W2>() {}
// Conversion from plain LogWeightTpl.
// NOLINTNEXTLINE(google-explicit-constructor)
SignedLogWeightTpl(const W2 &w2) : PairWeight<W1, W2>(W1(1.0), w2) {}
explicit SignedLogWeightTpl(const PairWeight<W1, W2> &weight) : PairWeight<W1, W2>(weight) {}
SignedLogWeightTpl(const W1 &w1, const W2 &w2) : PairWeight<W1, W2>(w1, w2) {}
static const SignedLogWeightTpl &Zero() { static const SignedLogWeightTpl zero(W1(1.0), W2::Zero()); return zero; }
static const SignedLogWeightTpl &One() { static const SignedLogWeightTpl one(W1(1.0), W2::One()); return one; }
static const SignedLogWeightTpl &NoWeight() { static const SignedLogWeightTpl no_weight(W1(1.0), W2::NoWeight()); return no_weight; }
static const std::string &Type() { static const std::string *const type = new std::string("signed_log_" + W1::Type() + "_" + W2::Type()); return *type; }
bool IsPositive() const { return Value1().Value() > 0; }
SignedLogWeightTpl Quantize(float delta = kDelta) const { return SignedLogWeightTpl(PairWeight<W1, W2>::Quantize(delta)); }
ReverseWeight Reverse() const { return SignedLogWeightTpl(PairWeight<W1, W2>::Reverse()); }
bool Member() const { return PairWeight<W1, W2>::Member(); }
// Neither idempotent nor path.
static constexpr uint64_t Properties() { return kLeftSemiring | kRightSemiring | kCommutative; }
size_t Hash() const { size_t h1; if (Value2() == W2::Zero() || IsPositive()) { h1 = TropicalWeight(1.0).Hash(); } else { h1 = TropicalWeight(-1.0).Hash(); } size_t h2 = Value2().Hash(); static constexpr int lshift = 5; static constexpr int rshift = CHAR_BIT * sizeof(size_t) - 5; return h1 << lshift ^ h1 >> rshift ^ h2; } };
template <class T> inline SignedLogWeightTpl<T> Plus(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { using W1 = TropicalWeight; using W2 = LogWeightTpl<T>; if (!w1.Member() || !w2.Member()) return SignedLogWeightTpl<T>::NoWeight(); const auto s1 = w1.IsPositive(); const auto s2 = w2.IsPositive(); const bool equal = (s1 == s2); const auto f1 = w1.Value2().Value(); const auto f2 = w2.Value2().Value(); if (f1 == FloatLimits<T>::PosInfinity()) { return w2; } else if (f2 == FloatLimits<T>::PosInfinity()) { return w1; } else if (f1 == f2) { if (equal) { return SignedLogWeightTpl<T>(W1(w1.Value1()), W2(f2 - M_LN2)); } else { return SignedLogWeightTpl<T>::Zero(); } } else if (f1 > f2) { if (equal) { return SignedLogWeightTpl<T>(W1(w1.Value1()), W2(f2 - internal::LogPosExp(f1 - f2))); } else { return SignedLogWeightTpl<T>(W1(w2.Value1()), W2((f2 - internal::LogNegExp(f1 - f2)))); } } else { if (equal) { return SignedLogWeightTpl<T>(W1(w2.Value1()), W2((f1 - internal::LogPosExp(f2 - f1)))); } else { return SignedLogWeightTpl<T>(W1(w1.Value1()), W2((f1 - internal::LogNegExp(f2 - f1)))); } } }
template <class T> inline SignedLogWeightTpl<T> Minus(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { SignedLogWeightTpl<T> minus_w2(-w2.Value1().Value(), w2.Value2()); return Plus(w1, minus_w2); }
template <class T> inline SignedLogWeightTpl<T> Times(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { using W2 = LogWeightTpl<T>; if (!w1.Member() || !w2.Member()) return SignedLogWeightTpl<T>::NoWeight(); const auto s1 = w1.IsPositive(); const auto s2 = w2.IsPositive(); const auto f1 = w1.Value2().Value(); const auto f2 = w2.Value2().Value(); if (s1 == s2) { return SignedLogWeightTpl<T>(TropicalWeight(1.0), W2(f1 + f2)); } else { return SignedLogWeightTpl<T>(TropicalWeight(-1.0), W2(f1 + f2)); } }
template <class T> inline SignedLogWeightTpl<T> Divide(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2, DivideType typ = DIVIDE_ANY) { using W2 = LogWeightTpl<T>; if (!w1.Member() || !w2.Member()) return SignedLogWeightTpl<T>::NoWeight(); const auto s1 = w1.IsPositive(); const auto s2 = w2.IsPositive(); const auto f1 = w1.Value2().Value(); const auto f2 = w2.Value2().Value(); if (f2 == FloatLimits<T>::PosInfinity()) { return SignedLogWeightTpl<T>(TropicalWeight(1.0), W2(FloatLimits<T>::NumberBad())); } else if (f1 == FloatLimits<T>::PosInfinity()) { return SignedLogWeightTpl<T>(TropicalWeight(1.0), W2(FloatLimits<T>::PosInfinity())); } else if (s1 == s2) { return SignedLogWeightTpl<T>(TropicalWeight(1.0), W2(f1 - f2)); } else { return SignedLogWeightTpl<T>(TropicalWeight(-1.0), W2(f1 - f2)); } }
template <class T> inline bool ApproxEqual(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2, float delta = kDelta) { using W2 = LogWeightTpl<T>; if (w1.IsPositive() == w2.IsPositive()) { return ApproxEqual(w1.Value2(), w2.Value2(), delta); } else { return ApproxEqual(w1.Value2(), W2::Zero(), delta) && ApproxEqual(w2.Value2(), W2::Zero(), delta); } }
template <class T> inline bool operator==(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { using W2 = LogWeightTpl<T>; if (w1.IsPositive() == w2.IsPositive()) { return w1.Value2() == w2.Value2(); } else { return w1.Value2() == W2::Zero() && w2.Value2() == W2::Zero(); } }
template <class T> inline bool operator!=(const SignedLogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { return !(w1 == w2); }
// All functions and operators with a LogWeightTpl arg need to be
// explicitly specified since the implicit constructor will not be
// tried in conjunction with function overloading.
template <class T> inline SignedLogWeightTpl<T> Plus(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { return Plus(SignedLogWeightTpl<T>(w1), w2); }
template <class T> inline SignedLogWeightTpl<T> Plus(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2) { return Plus(w1, SignedLogWeightTpl<T>(w2)); }
template <class T> inline SignedLogWeightTpl<T> Minus(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { return Minus(SignedLogWeightTpl<T>(w1), w2); }
template <class T> inline SignedLogWeightTpl<T> Minus(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2) { return Minus(w1, SignedLogWeightTpl<T>(w2)); }
template <class T> inline SignedLogWeightTpl<T> Times(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { return Times(SignedLogWeightTpl<T>(w1), w2); }
template <class T> inline SignedLogWeightTpl<T> Times(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2) { return Times(w1, SignedLogWeightTpl<T>(w2)); }
template <class T> inline SignedLogWeightTpl<T> Divide(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2, DivideType typ = DIVIDE_ANY) { return Divide(SignedLogWeightTpl<T>(w1), w2, typ); }
template <class T> inline SignedLogWeightTpl<T> Divide(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2, DivideType typ = DIVIDE_ANY) { return Divide(w1, SignedLogWeightTpl<T>(w2), typ); }
template <class T> inline bool ApproxEqual(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2, float delta = kDelta) { return ApproxEqual(LogWeightTpl<T>(w1), w2, delta); }
template <class T> inline bool ApproxEqual(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2, float delta = kDelta) { return ApproxEqual(w1, LogWeightTpl<T>(w2), delta); }
template <class T> inline bool operator==(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { return SignedLogWeightTpl<T>(w1) == w2; }
template <class T> inline bool operator==(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2) { return w1 == SignedLogWeightTpl<T>(w2); }
template <class T> inline bool operator!=(const LogWeightTpl<T> &w1, const SignedLogWeightTpl<T> &w2) { return SignedLogWeightTpl<T>(w1) != w2; }
template <class T> inline bool operator!=(const SignedLogWeightTpl<T> &w1, const LogWeightTpl<T> &w2) { return w1 != SignedLogWeightTpl<T>(w2); }
// Single-precision signed-log weight.
using SignedLogWeight = SignedLogWeightTpl<float>;
// Double-precision signed-log weight.
using SignedLog64Weight = SignedLogWeightTpl<double>;
template <class W1, class W2> bool SignedLogConvertCheck(W1 weight) { if (weight.Value1().Value() < 0.0) { FSTERROR() << "WeightConvert: Can't convert weight " << weight << " from " << W1::Type() << " to " << W2::Type(); return false; } return true; }
// Specialization using the Kahan compensated summation
template <class T> class Adder<SignedLogWeightTpl<T>> { public: using Weight = SignedLogWeightTpl<T>; using W1 = TropicalWeight; using W2 = LogWeightTpl<T>;
explicit Adder(Weight w = Weight::Zero()) : ssum_(w.IsPositive()), sum_(w.Value2().Value()), c_(0.0) {}
Weight Add(const Weight &w) { const auto sw = w.IsPositive(); const auto f = w.Value2().Value(); const bool equal = (ssum_ == sw);
if (!Sum().Member() || f == FloatLimits<T>::PosInfinity()) { return Sum(); } else if (!w.Member() || sum_ == FloatLimits<T>::PosInfinity()) { sum_ = f; ssum_ = sw; c_ = 0.0; } else if (f == sum_) { if (equal) { sum_ = internal::KahanLogSum(sum_, f, &c_); } else { sum_ = FloatLimits<T>::PosInfinity(); ssum_ = true; c_ = 0.0; } } else if (f > sum_) { if (equal) { sum_ = internal::KahanLogSum(sum_, f, &c_); } else { sum_ = internal::KahanLogDiff(sum_, f, &c_); } } else { if (equal) { sum_ = internal::KahanLogSum(f, sum_, &c_); } else { sum_ = internal::KahanLogDiff(f, sum_, &c_); ssum_ = sw; } } return Sum(); }
Weight Sum() const { return Weight(W1(ssum_ ? 1.0 : -1.0), W2(sum_)); }
void Reset(Weight w = Weight::Zero()) { ssum_ = w.IsPositive(); sum_ = w.Value2().Value(); c_ = 0.0; }
private: bool ssum_; // true iff sign of sum is positive
double sum_; // unsigned sum
double c_; // Kahan compensation
};
// Converts to tropical.
template <> struct WeightConvert<SignedLogWeight, TropicalWeight> { TropicalWeight operator()(const SignedLogWeight &weight) const { if (!SignedLogConvertCheck<SignedLogWeight, TropicalWeight>(weight)) { return TropicalWeight::NoWeight(); } return TropicalWeight(weight.Value2().Value()); } };
template <> struct WeightConvert<SignedLog64Weight, TropicalWeight> { TropicalWeight operator()(const SignedLog64Weight &weight) const { if (!SignedLogConvertCheck<SignedLog64Weight, TropicalWeight>(weight)) { return TropicalWeight::NoWeight(); } return TropicalWeight(weight.Value2().Value()); } };
// Converts to log.
template <> struct WeightConvert<SignedLogWeight, LogWeight> { LogWeight operator()(const SignedLogWeight &weight) const { if (!SignedLogConvertCheck<SignedLogWeight, LogWeight>(weight)) { return LogWeight::NoWeight(); } return LogWeight(weight.Value2().Value()); } };
template <> struct WeightConvert<SignedLog64Weight, LogWeight> { LogWeight operator()(const SignedLog64Weight &weight) const { if (!SignedLogConvertCheck<SignedLog64Weight, LogWeight>(weight)) { return LogWeight::NoWeight(); } return LogWeight(weight.Value2().Value()); } };
// Converts to log64.
template <> struct WeightConvert<SignedLogWeight, Log64Weight> { Log64Weight operator()(const SignedLogWeight &weight) const { if (!SignedLogConvertCheck<SignedLogWeight, Log64Weight>(weight)) { return Log64Weight::NoWeight(); } return Log64Weight(weight.Value2().Value()); } };
template <> struct WeightConvert<SignedLog64Weight, Log64Weight> { Log64Weight operator()(const SignedLog64Weight &weight) const { if (!SignedLogConvertCheck<SignedLog64Weight, Log64Weight>(weight)) { return Log64Weight::NoWeight(); } return Log64Weight(weight.Value2().Value()); } };
// Converts to real.
template <> struct WeightConvert<SignedLogWeight, RealWeight> { RealWeight operator()(const SignedLogWeight &weight) const { return RealWeight(weight.Value1().Value() * exp(-weight.Value2().Value())); } };
template <> struct WeightConvert<SignedLog64Weight, RealWeight> { RealWeight operator()(const SignedLog64Weight &weight) const { return RealWeight(weight.Value1().Value() * exp(-weight.Value2().Value())); } };
// Converts to real64.
template <> struct WeightConvert<SignedLogWeight, Real64Weight> { Real64Weight operator()(const SignedLogWeight &weight) const { return Real64Weight(weight.Value1().Value() * exp(-weight.Value2().Value())); } };
template <> struct WeightConvert<SignedLog64Weight, Real64Weight> { Real64Weight operator()(const SignedLog64Weight &weight) const { return Real64Weight(weight.Value1().Value() * exp(-weight.Value2().Value())); } };
// Converts to signed log.
template <> struct WeightConvert<TropicalWeight, SignedLogWeight> { SignedLogWeight operator()(const TropicalWeight &weight) const { return SignedLogWeight(1.0, weight.Value()); } };
template <> struct WeightConvert<LogWeight, SignedLogWeight> { SignedLogWeight operator()(const LogWeight &weight) const { return SignedLogWeight(1.0, weight.Value()); } };
template <> struct WeightConvert<Log64Weight, SignedLogWeight> { SignedLogWeight operator()(const Log64Weight &weight) const { return SignedLogWeight(1.0, weight.Value()); } };
template <> struct WeightConvert<RealWeight, SignedLogWeight> { SignedLogWeight operator()(const RealWeight &weight) const { return SignedLogWeight(weight.Value() >= 0 ? 1.0 : -1.0, -log(std::abs(weight.Value()))); } };
template <> struct WeightConvert<Real64Weight, SignedLogWeight> { SignedLogWeight operator()(const Real64Weight &weight) const { return SignedLogWeight(weight.Value() >= 0 ? 1.0 : -1.0, -log(std::abs(weight.Value()))); } };
template <> struct WeightConvert<SignedLog64Weight, SignedLogWeight> { SignedLogWeight operator()(const SignedLog64Weight &weight) const { return SignedLogWeight(weight.Value1(), weight.Value2().Value()); } };
// Converts to signed log64.
template <> struct WeightConvert<TropicalWeight, SignedLog64Weight> { SignedLog64Weight operator()(const TropicalWeight &weight) const { return SignedLog64Weight(1.0, weight.Value()); } };
template <> struct WeightConvert<LogWeight, SignedLog64Weight> { SignedLog64Weight operator()(const LogWeight &weight) const { return SignedLog64Weight(1.0, weight.Value()); } };
template <> struct WeightConvert<Log64Weight, SignedLog64Weight> { SignedLog64Weight operator()(const Log64Weight &weight) const { return SignedLog64Weight(1.0, weight.Value()); } };
template <> struct WeightConvert<RealWeight, SignedLog64Weight> { SignedLog64Weight operator()(const RealWeight &weight) const { return SignedLog64Weight(weight.Value() >= 0 ? 1.0 : -1.0, -log(std::abs(weight.Value()))); } };
template <> struct WeightConvert<Real64Weight, SignedLog64Weight> { SignedLog64Weight operator()(const Real64Weight &weight) const { return SignedLog64Weight(weight.Value() >= 0 ? 1.0 : -1.0, -log(std::abs(weight.Value()))); } };
template <> struct WeightConvert<SignedLogWeight, SignedLog64Weight> { SignedLog64Weight operator()(const SignedLogWeight &weight) const { return SignedLog64Weight(weight.Value1(), weight.Value2().Value()); } };
// This function object returns SignedLogWeightTpl<T>'s that are random integers
// chosen from [0, num_random_weights) times a random sign. This is intended
// primarily for testing.
template <class T> class WeightGenerate<SignedLogWeightTpl<T>> { public: using Weight = SignedLogWeightTpl<T>; using W1 = typename Weight::W1; using W2 = typename Weight::W2;
explicit WeightGenerate(uint64_t seed = std::random_device()(), bool allow_zero = true, size_t num_random_weights = kNumRandomWeights) : rand_(seed), allow_zero_(allow_zero), num_random_weights_(num_random_weights) {}
Weight operator()() const { static constexpr W1 negative(-1.0); static constexpr W1 positive(+1.0); const bool sign = std::bernoulli_distribution(.5)(rand_); const int sample = std::uniform_int_distribution<>( 0, num_random_weights_ + allow_zero_ - 1)(rand_); if (allow_zero_ && sample == num_random_weights_) { return Weight(sign ? positive : negative, W2::Zero()); } return Weight(sign ? positive : negative, W2(sample)); }
private: mutable std::mt19937_64 rand_; const bool allow_zero_; const size_t num_random_weights_; };
} // namespace fst
#endif // FST_SIGNED_LOG_WEIGHT_H_
|