|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to compute the concatenation of two FSTs.
#ifndef FST_CONCAT_H_
#define FST_CONCAT_H_
#include <algorithm>
#include <vector>
#include <fst/log.h>
#include <fst/arc.h>
#include <fst/cache.h>
#include <fst/expanded-fst.h>
#include <fst/float-weight.h>
#include <fst/fst.h>
#include <fst/impl-to-fst.h>
#include <fst/mutable-fst.h>
#include <fst/properties.h>
#include <fst/rational.h>
#include <fst/symbol-table.h>
#include <fst/util.h>
namespace fst {
// Computes the concatenation (product) of two FSTs. If FST1 transduces string
// x to y with weight a and FST2 transduces string w to v with weight b, then
// their concatenation transduces string xw to yv with weight Times(a, b).
//
// This version modifies its MutableFst argument (in first position).
//
// Complexity:
//
// Time: O(V1 + V2 + E2)
// Space: O(V1 + V2 + E2)
//
// where Vi is the number of states, and Ei is the number of arcs, of the ith
// FST.
template <class Arc> void Concat(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks that the symbol table are compatible.
if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "Concat: Input/output symbol tables of 1st argument " << "does not match input/output symbol tables of 2nd argument"; fst1->SetProperties(kError, kError); return; } const auto props1 = fst1->Properties(kFstProperties, false); const auto props2 = fst2.Properties(kFstProperties, false); const auto start1 = fst1->Start(); if (start1 == kNoStateId) { if (props2 & kError) fst1->SetProperties(kError, kError); return; } const auto numstates1 = fst1->NumStates(); if (std::optional<StateId> numstates2 = fst2.NumStatesIfKnown()) { fst1->ReserveStates(numstates1 + *numstates2); } for (StateIterator<Fst<Arc>> siter2(fst2); !siter2.Done(); siter2.Next()) { const auto s1 = fst1->AddState(); const auto s2 = siter2.Value(); fst1->SetFinal(s1, fst2.Final(s2)); fst1->ReserveArcs(s1, fst2.NumArcs(s2)); for (ArcIterator<Fst<Arc>> aiter(fst2, s2); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate += numstates1; fst1->AddArc(s1, arc); } } const auto start2 = fst2.Start(); for (StateId s1 = 0; s1 < numstates1; ++s1) { const auto weight = fst1->Final(s1); if (weight != Weight::Zero()) { fst1->SetFinal(s1, Weight::Zero()); if (start2 != kNoStateId) { fst1->AddArc(s1, Arc(0, 0, weight, start2 + numstates1)); } } } if (start2 != kNoStateId) { fst1->SetProperties(ConcatProperties(props1, props2), kFstProperties); } }
// Computes the concatentation of two FSTs. This version modifies its
// RationalFst input (in first position).
template <class Arc> void Concat(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) { fst1->GetMutableImpl()->AddConcat(fst2, true); }
// Computes the concatentation of two FSTs. This version modifies its
// MutableFst argument (in second position).
//
// Complexity:
//
// Time: O(V1 + E1)
// Space: O(V1 + E1)
//
// where Vi is the number of states, and Ei is the number of arcs, of the ith
// FST.
template <class Arc> void Concat(const Fst<Arc> &fst1, MutableFst<Arc> *fst2) { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; // Checks that the symbol table are compatible.
if (!CompatSymbols(fst1.InputSymbols(), fst2->InputSymbols()) || !CompatSymbols(fst1.OutputSymbols(), fst2->OutputSymbols())) { FSTERROR() << "Concat: Input/output symbol tables of 1st argument " << "does not match input/output symbol tables of 2nd argument"; fst2->SetProperties(kError, kError); return; } const auto props1 = fst1.Properties(kFstProperties, false); const auto props2 = fst2->Properties(kFstProperties, false); const auto start2 = fst2->Start(); if (start2 == kNoStateId) { if (props1 & kError) fst2->SetProperties(kError, kError); return; } const auto numstates2 = fst2->NumStates(); if (std::optional<StateId> numstates1 = fst1.NumStatesIfKnown()) { fst2->ReserveStates(numstates2 + *numstates1); } for (StateIterator<Fst<Arc>> siter(fst1); !siter.Done(); siter.Next()) { const auto s1 = siter.Value(); const auto s2 = fst2->AddState(); const auto weight = fst1.Final(s1); if (weight != Weight::Zero()) { fst2->ReserveArcs(s2, fst1.NumArcs(s1) + 1); fst2->AddArc(s2, Arc(0, 0, weight, start2)); } else { fst2->ReserveArcs(s2, fst1.NumArcs(s1)); } for (ArcIterator<Fst<Arc>> aiter(fst1, s1); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate += numstates2; fst2->AddArc(s2, arc); } } const auto start1 = fst1.Start(); if (start1 != kNoStateId) { fst2->SetStart(start1 + numstates2); fst2->SetProperties(ConcatProperties(props1, props2), kFstProperties); } else { fst2->SetStart(fst2->AddState()); } }
// Same as the above but can handle arbitrarily many left-hand-side FSTs,
// preallocating the states.
template <class Arc> void Concat(const std::vector<const Fst<Arc> *> &fsts1, MutableFst<Arc> *fst2) { fst2->ReserveStates(CountStates(fsts1) + fst2->NumStates()); for (const auto *fst1 : fsts1) Concat(*fst1, fst2); }
// Computes the concatentation of two FSTs. This version modifies its
// RationalFst input (in second position).
template <class Arc> void Concat(const Fst<Arc> &fst1, RationalFst<Arc> *fst2) { fst2->GetMutableImpl()->AddConcat(fst1, false); }
using ConcatFstOptions = RationalFstOptions;
// Computes the concatenation (product) of two FSTs; this version is a delayed
// FST. If FST1 transduces string x to y with weight a and FST2 transduces
// string w to v with weight b, then their concatenation transduces string xw
// to yv with Times(a, b).
//
// Complexity:
//
// Time: O(v1 + e1 + v2 + e2),
// Space: O(v1 + v2)
//
// where vi is the number of states visited, and ei is the number of arcs
// visited, of the ith FST. Constant time and space to visit an input state or
// arc is assumed and exclusive of caching.
template <class A> class ConcatFst : public RationalFst<A> { public: using Arc = A; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
ConcatFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2) { GetMutableImpl()->InitConcat(fst1, fst2); }
ConcatFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2, const ConcatFstOptions &opts) : RationalFst<Arc>(opts) { GetMutableImpl()->InitConcat(fst1, fst2); }
// See Fst<>::Copy() for doc.
ConcatFst(const ConcatFst &fst, bool safe = false) : RationalFst<Arc>(fst, safe) {}
// Get a copy of this ConcatFst. See Fst<>::Copy() for further doc.
ConcatFst *Copy(bool safe = false) const override { return new ConcatFst(*this, safe); }
private: using ImplToFst<internal::RationalFstImpl<Arc>>::GetImpl; using ImplToFst<internal::RationalFstImpl<Arc>>::GetMutableImpl; };
// Specialization for ConcatFst.
template <class Arc> class StateIterator<ConcatFst<Arc>> : public StateIterator<RationalFst<Arc>> { public: explicit StateIterator(const ConcatFst<Arc> &fst) : StateIterator<RationalFst<Arc>>(fst) {} };
// Specialization for ConcatFst.
template <class Arc> class ArcIterator<ConcatFst<Arc>> : public ArcIterator<RationalFst<Arc>> { public: using StateId = typename Arc::StateId;
ArcIterator(const ConcatFst<Arc> &fst, StateId s) : ArcIterator<RationalFst<Arc>>(fst, s) {} };
// Useful alias when using StdArc.
using StdConcatFst = ConcatFst<StdArc>;
} // namespace fst
#endif // FST_CONCAT_H_
|