|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to determine the equivalence of two FSTs.
#ifndef FST_EQUIVALENT_H_
#define FST_EQUIVALENT_H_
#include <algorithm>
#include <cstdint>
#include <queue>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/arc-map.h>
#include <fst/encode.h>
#include <fst/fst.h>
#include <fst/properties.h>
#include <fst/push.h>
#include <fst/reweight.h>
#include <fst/symbol-table.h>
#include <fst/union-find.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
#include <fst/weight.h>
#include <unordered_map>
namespace fst { namespace internal {
// Traits-like struct holding utility functions/typedefs/constants for
// the equivalence algorithm.
//
// Encoding device: in order to make the statesets of the two acceptors
// disjoint, we map Arc::StateId on the type MappedId. The states of
// the first acceptor are mapped on odd numbers (s -> 2s + 1), and
// those of the second one on even numbers (s -> 2s + 2). The number 0
// is reserved for an implicit (non-final) dead state (required for
// the correct treatment of non-coaccessible states; kNoStateId is mapped to
// kDeadState for both acceptors). The union-find algorithm operates on the
// mapped IDs.
template <class Arc> struct EquivalenceUtil { using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
using MappedId = StateId; // ID for an equivalence class.
// MappedId for an implicit dead state.
static constexpr MappedId kDeadState = 0;
// MappedId for lookup failure.
static constexpr MappedId kInvalidId = -1;
// Maps state ID to the representative of the corresponding
// equivalence class. The parameter 'which_fst' takes the values 1
// and 2, identifying the input FST.
static MappedId MapState(StateId s, int32_t which_fst) { return (kNoStateId == s) ? kDeadState : (static_cast<MappedId>(s) << 1) + which_fst; }
// Maps set ID to State ID.
static StateId UnMapState(MappedId id) { return static_cast<StateId>((--id) >> 1); }
// Convenience function: checks if state with MappedId s is final in
// acceptor fa.
static bool IsFinal(const Fst<Arc> &fa, MappedId s) { return (kDeadState == s) ? false : (fa.Final(UnMapState(s)) != Weight::Zero()); } // Convenience function: returns the representative of ID in sets,
// creating a new set if needed.
static MappedId FindSet(UnionFind<MappedId> *sets, MappedId id) { const auto repr = sets->FindSet(id); if (repr != kInvalidId) { return repr; } else { sets->MakeSet(id); return id; } } };
} // namespace internal
// Equivalence checking algorithm: determines if the two FSTs fst1 and fst2
// are equivalent. The input FSTs must be deterministic input-side epsilon-free
// acceptors, unweighted or with weights over a left semiring. Two acceptors are
// considered equivalent if they accept exactly the same set of strings (with
// the same weights).
//
// The algorithm (cf. Aho, Hopcroft and Ullman, "The Design and Analysis of
// Computer Programs") successively constructs sets of states that can be
// reached by the same prefixes, starting with a set containing the start states
// of both acceptors. A disjoint tree forest (the union-find algorithm) is used
// to represent the sets of states. The algorithm returns false if one of the
// constructed sets contains both final and non-final states. Returns an
// optional error value (useful when FST_FLAGS_error_fatal = false).
//
// Complexity:
//
// Quasi-linear, i.e., O(n G(n)), where
//
// n = |S1| + |S2| is the number of states in both acceptors
//
// G(n) is a very slowly growing function that can be approximated
// by 4 by all practical purposes.
template <class Arc> bool Equivalent(const Fst<Arc> &fst1, const Fst<Arc> &fst2, float delta = kDelta, bool *error = nullptr) { using Weight = typename Arc::Weight; if (error) *error = false; // Check that the symbol table are compatible.
if (!CompatSymbols(fst1.InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1.OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "Equivalent: Input/output symbol tables of 1st argument " << "do not match input/output symbol tables of 2nd argument"; if (error) *error = true; return false; } // Check properties first.
static constexpr auto props = kNoEpsilons | kIDeterministic | kAcceptor; if (fst1.Properties(props, true) != props) { FSTERROR() << "Equivalent: 1st argument not an" << " epsilon-free deterministic acceptor"; if (error) *error = true; return false; } if (fst2.Properties(props, true) != props) { FSTERROR() << "Equivalent: 2nd argument not an" << " epsilon-free deterministic acceptor"; if (error) *error = true; return false; } if ((fst1.Properties(kUnweighted, true) != kUnweighted) || (fst2.Properties(kUnweighted, true) != kUnweighted)) { VectorFst<Arc> efst1(fst1); VectorFst<Arc> efst2(fst2); Push(&efst1, REWEIGHT_TO_INITIAL, delta); Push(&efst2, REWEIGHT_TO_INITIAL, delta); ArcMap(&efst1, QuantizeMapper<Arc>(delta)); ArcMap(&efst2, QuantizeMapper<Arc>(delta)); EncodeMapper<Arc> mapper(kEncodeWeights | kEncodeLabels, ENCODE); ArcMap(&efst1, &mapper); ArcMap(&efst2, &mapper); return Equivalent(efst1, efst2); } using Util = internal::EquivalenceUtil<Arc>; using MappedId = typename Util::MappedId; enum { FST1 = 1, FST2 = 2 }; // Required by Util::MapState(...)
auto s1 = Util::MapState(fst1.Start(), FST1); auto s2 = Util::MapState(fst2.Start(), FST2); // The union-find structure.
UnionFind<MappedId> eq_classes(1000, Util::kInvalidId); // Initializes the union-find structure.
eq_classes.MakeSet(s1); eq_classes.MakeSet(s2); // Data structure for the (partial) acceptor transition function of fst1 and
// fst2: input labels mapped to pairs of MappedIds representing destination
// states of the corresponding arcs in fst1 and fst2, respectively.
using Label2StatePairMap = std::unordered_map<typename Arc::Label, std::pair<MappedId, MappedId>>; Label2StatePairMap arc_pairs; // Pairs of MappedId's to be processed, organized in a queue.
std::queue<std::pair<MappedId, MappedId>> q; bool ret = true; // Returns early if the start states differ w.r.t. finality.
if (Util::IsFinal(fst1, s1) != Util::IsFinal(fst2, s2)) ret = false; // Main loop: explores the two acceptors in a breadth-first manner, updating
// the equivalence relation on the statesets. Loop invariant: each block of
// the states contains either final states only or non-final states only.
for (q.emplace(s1, s2); ret && !q.empty(); q.pop()) { s1 = q.front().first; s2 = q.front().second; // Representatives of the equivalence classes of s1/s2.
const auto rep1 = Util::FindSet(&eq_classes, s1); const auto rep2 = Util::FindSet(&eq_classes, s2); if (rep1 != rep2) { eq_classes.Union(rep1, rep2); arc_pairs.clear(); // Copies outgoing arcs starting at s1 into the hash-table.
if (Util::kDeadState != s1) { ArcIterator<Fst<Arc>> arc_iter(fst1, Util::UnMapState(s1)); for (; !arc_iter.Done(); arc_iter.Next()) { const auto &arc = arc_iter.Value(); // Zero-weight arcs are treated as if they did not exist.
if (arc.weight != Weight::Zero()) { arc_pairs[arc.ilabel].first = Util::MapState(arc.nextstate, FST1); } } } // Copies outgoing arcs starting at s2 into the hashtable.
if (Util::kDeadState != s2) { ArcIterator<Fst<Arc>> arc_iter(fst2, Util::UnMapState(s2)); for (; !arc_iter.Done(); arc_iter.Next()) { const auto &arc = arc_iter.Value(); // Zero-weight arcs are treated as if they did not exist.
if (arc.weight != Weight::Zero()) { arc_pairs[arc.ilabel].second = Util::MapState(arc.nextstate, FST2); } } } // Iterates through the hashtable and process pairs of target states.
for (const auto &arc_iter : arc_pairs) { const auto &pair = arc_iter.second; if (Util::IsFinal(fst1, pair.first) != Util::IsFinal(fst2, pair.second)) { // Detected inconsistency: return false.
ret = false; break; } q.push(pair); } } } if (fst1.Properties(kError, false) || fst2.Properties(kError, false)) { if (error) *error = true; return false; } return ret; }
} // namespace fst
#endif // FST_EQUIVALENT_H_
|