|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// FST abstract base class definition, state and arc iterator interface, and
// suggested base implementation.
#ifndef FST_FST_H_
#define FST_FST_H_
#include <sys/types.h>
#include <atomic>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <ios>
#include <iostream>
#include <istream>
#include <memory>
#include <optional>
#include <ostream>
#include <sstream>
#include <string>
#include <utility>
#include <fst/compat.h>
#include <fst/flags.h>
#include <fst/log.h>
#include <fst/arc.h>
#include <fstream>
#include <fst/memory.h>
#include <fst/properties.h>
#include <fst/register.h>
#include <fst/symbol-table.h>
#include <fst/util.h>
#include <string_view>
DECLARE_bool(fst_align);
namespace fst {
// Identifies stream data as an FST (and its endianity).
inline constexpr int32_t kFstMagicNumber = 2125659606;
class FstHeader; template <class Arc> class MatcherBase; template <class Arc> struct ArcIteratorData; template <class Arc> struct StateIteratorData;
struct FstReadOptions { // FileReadMode(s) are advisory, there are many conditions than prevent a
// file from being mapped, READ mode will be selected in these cases with
// a warning indicating why it was chosen.
enum FileReadMode { READ, MAP };
std::string source; // Where you're reading from.
const FstHeader *header; // Pointer to FST header; if non-zero, use
// this info (don't read a stream header).
const SymbolTable *isymbols; // Pointer to input symbols; if non-zero, use
// this info (read and skip stream isymbols)
const SymbolTable *osymbols; // Pointer to output symbols; if non-zero, use
// this info (read and skip stream osymbols)
FileReadMode mode; // Read or map files (advisory, if possible)
bool read_isymbols; // Read isymbols, if any (default: true).
bool read_osymbols; // Read osymbols, if any (default: true).
explicit FstReadOptions( const std::string_view source = "<unspecified>", const FstHeader * header = nullptr, const SymbolTable * isymbols = nullptr, const SymbolTable * osymbols = nullptr);
explicit FstReadOptions(const std::string_view source, const SymbolTable *isymbols, const SymbolTable *osymbols = nullptr);
// Helper function to convert strings FileReadModes into their enum value.
static FileReadMode ReadMode(std::string_view mode);
// Outputs a debug string for the FstReadOptions object.
std::string DebugString() const; };
struct FstWriteOptions { std::string source; // Where you're writing to.
bool write_header; // Write the header?
bool write_isymbols; // Write input symbols?
bool write_osymbols; // Write output symbols?
bool align; // Write data aligned (may fail on pipes)?
bool stream_write; // Avoid seek operations in writing.
explicit FstWriteOptions(std::string_view source = "<unspecified>", bool write_header = true, bool write_isymbols = true, bool write_osymbols = true, bool align = FST_FLAGS_fst_align, bool stream_write = false) : source(source), write_header(write_header), write_isymbols(write_isymbols), write_osymbols(write_osymbols), align(align), stream_write(stream_write) {} };
// Header class.
//
// This is the recommended file header representation.
class FstHeader { public: enum Flags { HAS_ISYMBOLS = 0x1, // Has input symbol table.
HAS_OSYMBOLS = 0x2, // Has output symbol table.
IS_ALIGNED = 0x4, // Memory-aligned (where appropriate).
};
FstHeader() = default;
const std::string &FstType() const { return fsttype_; }
const std::string &ArcType() const { return arctype_; }
int32_t Version() const { return version_; }
uint32_t GetFlags() const { return flags_; }
uint64_t Properties() const { return properties_; }
int64_t Start() const { return start_; }
int64_t NumStates() const { return numstates_; }
int64_t NumArcs() const { return numarcs_; }
void SetFstType(std::string_view type) { fsttype_ = std::string(type); }
void SetArcType(std::string_view type) { arctype_ = std::string(type); }
void SetVersion(int32_t version) { version_ = version; }
void SetFlags(uint32_t flags) { flags_ = flags; }
void SetProperties(uint64_t properties) { properties_ = properties; }
void SetStart(int64_t start) { start_ = start; }
void SetNumStates(int64_t numstates) { numstates_ = numstates; }
void SetNumArcs(int64_t numarcs) { numarcs_ = numarcs; }
bool Read(std::istream &strm, const std::string &source, bool rewind = false);
bool Write(std::ostream &strm, std::string_view source) const;
// Outputs a debug string for the FstHeader object.
std::string DebugString() const;
private: std::string fsttype_; // E.g. "vector".
std::string arctype_; // E.g. "standard".
int32_t version_ = 0; // Type version number.
uint32_t flags_ = 0; // File format bits.
uint64_t properties_ = 0; // FST property bits.
int64_t start_ = -1; // Start state.
int64_t numstates_ = 0; // # of states.
int64_t numarcs_ = 0; // # of arcs.
};
// Specifies matcher action.
enum MatchType { MATCH_INPUT = 1, // Match input label.
MATCH_OUTPUT = 2, // Match output label.
MATCH_BOTH = 3, // Match input or output label.
MATCH_NONE = 4, // Match nothing.
MATCH_UNKNOWN = 5 }; // Otherwise, match type unknown.
inline constexpr int kNoLabel = -1; // Not a valid label.
inline constexpr int kNoStateId = -1; // Not a valid state ID.
// A generic FST, templated on the arc definition, with common-demoninator
// methods (use StateIterator and ArcIterator to iterate over its states and
// arcs). Derived classes should be assumed to be thread-unsafe unless
// otherwise specified.
template <class A> class Fst { public: using Arc = A; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
virtual ~Fst() = default;
// Initial state.
virtual StateId Start() const = 0;
// State's final weight.
virtual Weight Final(StateId) const = 0;
// State's arc count.
virtual size_t NumArcs(StateId) const = 0;
// State's input epsilon count.
virtual size_t NumInputEpsilons(StateId) const = 0;
// State's output epsilon count.
virtual size_t NumOutputEpsilons(StateId) const = 0;
// Returns the number of states if it is finite and can be computed in O(1)
// time. Otherwise returns nullopt.
virtual std::optional<StateId> NumStatesIfKnown() const { return std::nullopt; }
// Property bits. If test = false, return stored properties bits for mask
// (some possibly unknown); if test = true, return property bits for mask
// (computing o.w. unknown).
virtual uint64_t Properties(uint64_t mask, bool test) const = 0;
// FST type name.
virtual const std::string &Type() const = 0;
// Gets a copy of this Fst. The copying behaves as follows:
//
// (1) The copying is constant time if safe = false or if safe = true
// and is on an otherwise unaccessed FST.
//
// (2) If safe = true, the copy is thread-safe in that the original
// and copy can be safely accessed (but not necessarily mutated) by
// separate threads. For some FST types, 'Copy(true)' should only be
// called on an FST that has not otherwise been accessed. Behavior is
// otherwise undefined.
//
// (3) If a MutableFst is copied and then mutated, then the original is
// unmodified and vice versa (often by a copy-on-write on the initial
// mutation, which may not be constant time).
virtual Fst *Copy(bool safe = false) const = 0;
// Reads an FST from an input stream; returns nullptr on error.
static Fst *Read(std::istream &strm, const FstReadOptions &opts) { FstReadOptions ropts(opts); FstHeader hdr; if (ropts.header) { hdr = *opts.header; } else { if (!hdr.Read(strm, opts.source)) return nullptr; ropts.header = &hdr; } const auto &fst_type = hdr.FstType(); const auto reader = FstRegister<Arc>::GetRegister()->GetReader(fst_type); if (!reader) { LOG(ERROR) << "Fst::Read: Unknown FST type " << fst_type << " (arc type = " << Arc::Type() << "): " << ropts.source; return nullptr; } return reader(strm, ropts); }
// Reads an FST from a file; returns nullptr on error. An empty source
// results in reading from standard input.
static Fst *Read(const std::string &source) { if (!source.empty()) { std::ifstream strm(source, std::ios_base::in | std::ios_base::binary); if (!strm) { LOG(ERROR) << "Fst::Read: Can't open file: " << source; return nullptr; } return Read(strm, FstReadOptions(source)); } else { return Read(std::cin, FstReadOptions("standard input")); } }
// Writes an FST to an output stream; returns false on error.
virtual bool Write(std::ostream &strm, const FstWriteOptions &opts) const { LOG(ERROR) << "Fst::Write: No write stream method for " << Type() << " FST type"; return false; }
// Writes an FST to a file; returns false on error; an empty source
// results in writing to standard output.
virtual bool Write(const std::string &source) const { LOG(ERROR) << "Fst::Write: No write source method for " << Type() << " FST type"; return false; }
// Some Fst implementations support
// template <class Fst2>
// static bool Fst1::WriteFst(const Fst2 &fst2, ...);
// which is equivalent to Fst1(fst2).Write(...), but uses less memory.
// WriteFst is not part of the general Fst interface.
// Returns input label symbol table; return nullptr if not specified.
virtual const SymbolTable *InputSymbols() const = 0;
// Return output label symbol table; return nullptr if not specified.
virtual const SymbolTable *OutputSymbols() const = 0;
// For generic state iterator construction (not normally called directly by
// users). Does not copy the FST.
virtual void InitStateIterator(StateIteratorData<Arc> *data) const = 0;
// For generic arc iterator construction (not normally called directly by
// users). Does not copy the FST.
virtual void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const = 0;
// For generic matcher construction (not normally called directly by users).
// Does not copy the FST.
virtual MatcherBase<Arc> *InitMatcher(MatchType match_type) const;
protected: bool WriteFile(const std::string &source) const { if (!source.empty()) { std::ofstream strm(source, std::ios_base::out | std::ios_base::binary); if (!strm) { LOG(ERROR) << "Fst::WriteFile: Can't open file: " << source; return false; } if (!Write(strm, FstWriteOptions(source))) { LOG(ERROR) << "Fst::WriteFile: Write failed: " << source; return false; } return true; } else { return Write(std::cout, FstWriteOptions("standard output")); } } };
// A useful alias when using StdArc.
using StdFst = Fst<StdArc>;
// State and arc iterator definitions.
//
// State iterator interface templated on the Arc definition; used for
// StateIterator specializations returned by the InitStateIterator FST method.
template <class Arc> class StateIteratorBase { public: using StateId = typename Arc::StateId;
virtual ~StateIteratorBase() = default;
// End of iterator?
virtual bool Done() const = 0; // Returns current state (when !Done()).
virtual StateId Value() const = 0; // Advances to next state (when !Done()).
virtual void Next() = 0; // Resets to initial condition.
virtual void Reset() = 0; };
// StateIterator initialization data.
template <class Arc> struct StateIteratorData { using StateId = typename Arc::StateId;
// Specialized iterator if non-null.
std::unique_ptr<StateIteratorBase<Arc>> base; // Otherwise, the total number of states.
StateId nstates = 0;
StateIteratorData() = default;
StateIteratorData(const StateIteratorData &) = delete; StateIteratorData &operator=(const StateIteratorData &) = delete; };
// Generic state iterator, templated on the FST definition (a wrapper
// around a pointer to a specific one). Here is a typical use:
//
// for (StateIterator<StdFst> siter(fst);
// !siter.Done();
// siter.Next()) {
// StateId s = siter.Value();
// ...
// }
// There is no copying of the FST.
//
// Specializations may exist for some FST types.
// StateIterators are thread-unsafe unless otherwise specified.
template <class FST> class StateIterator { public: using Arc = typename FST::Arc; using StateId = typename Arc::StateId;
explicit StateIterator(const FST &fst) { fst.InitStateIterator(&data_); }
bool Done() const { return data_.base ? data_.base->Done() : s_ >= data_.nstates; }
StateId Value() const { return data_.base ? data_.base->Value() : s_; }
void Next() { if (data_.base) { data_.base->Next(); } else { ++s_; } }
void Reset() { if (data_.base) { data_.base->Reset(); } else { s_ = 0; } }
private: StateIteratorData<Arc> data_; StateId s_ = 0; };
// Flags to control the behavior on an arc iterator via SetFlags().
// Value() gives valid ilabel.
inline constexpr uint8_t kArcILabelValue = 0x01; // Value() call gives valid olabel.
inline constexpr uint8_t kArcOLabelValue = 0x02; // Value() call gives valid weight.
inline constexpr uint8_t kArcWeightValue = 0x04; // Value() call gives valid nextstate.
inline constexpr uint8_t kArcNextStateValue = 0x08; // Arcs need not be cached.
inline constexpr uint8_t kArcNoCache = 0x10; inline constexpr uint8_t kArcValueFlags = kArcILabelValue | kArcOLabelValue | kArcWeightValue | kArcNextStateValue; inline constexpr uint8_t kArcFlags = kArcValueFlags | kArcNoCache;
// Arc iterator interface, templated on the arc definition; used for arc
// iterator specializations that are returned by the InitArcIterator FST method.
template <class Arc> class ArcIteratorBase { public: using StateId = typename Arc::StateId;
virtual ~ArcIteratorBase() = default;
// End of iterator?
virtual bool Done() const = 0; // Returns current arc (when !Done()).
virtual const Arc &Value() const = 0; // Advances to next arc (when !Done()).
virtual void Next() = 0; // Returns current position.
virtual size_t Position() const = 0; // Returns to initial condition.
virtual void Reset() = 0; // Advances to arbitrary arc by position.
virtual void Seek(size_t) = 0; // Returns current behavorial flags, a bitmask of kArcFlags.
virtual uint8_t Flags() const = 0; // Sets behavorial flags, a bitmask of kArcFlags.
virtual void SetFlags(uint8_t, uint8_t) = 0; };
// ArcIterator initialization data.
template <class Arc> struct ArcIteratorData { ArcIteratorData() = default;
ArcIteratorData(const ArcIteratorData &) = delete;
ArcIteratorData &operator=(const ArcIteratorData &) = delete;
std::unique_ptr<ArcIteratorBase<Arc>> base; // Specialized iterator if non-null.
const Arc *arcs = nullptr; // O.w. arcs pointer
size_t narcs = 0; // ... and arc count.
int *ref_count = nullptr; // ... and a reference count of the
// `narcs`-length `arcs` array if non-null.
};
// Generic arc iterator, templated on the FST definition (a wrapper around a
// pointer to a specific one). Here is a typical use:
//
// for (ArcIterator<StdFst> aiter(fst, s);
// !aiter.Done();
// aiter.Next()) {
// StdArc &arc = aiter.Value();
// ...
// }
// There is no copying of the FST.
//
// Specializations may exist for some FST types.
// ArcIterators are thread-unsafe unless otherwise specified.
template <class FST> class ArcIterator { public: using Arc = typename FST::Arc; using StateId = typename Arc::StateId;
ArcIterator(const FST &fst, StateId s) { fst.InitArcIterator(s, &data_); }
explicit ArcIterator(const ArcIteratorData<Arc> &data) = delete;
~ArcIterator() { if (data_.ref_count) { --(*data_.ref_count); } }
bool Done() const { return data_.base ? data_.base->Done() : i_ >= data_.narcs; }
const Arc &Value() const { return data_.base ? data_.base->Value() : data_.arcs[i_]; }
void Next() { if (data_.base) { data_.base->Next(); } else { ++i_; } }
void Reset() { if (data_.base) { data_.base->Reset(); } else { i_ = 0; } }
void Seek(size_t a) { if (data_.base) { data_.base->Seek(a); } else { i_ = a; } }
size_t Position() const { return data_.base ? data_.base->Position() : i_; }
uint8_t Flags() const { return data_.base ? data_.base->Flags() : kArcValueFlags; }
void SetFlags(uint8_t flags, uint8_t mask) { if (data_.base) data_.base->SetFlags(flags, mask); }
private: ArcIteratorData<Arc> data_; size_t i_ = 0; };
} // namespace fst
// ArcIterator placement operator new and destroy function; new needs to be in
// the global namespace.
template <class FST> void *operator new(size_t size, fst::MemoryPool<fst::ArcIterator<FST>> *pool) { return pool->Allocate(); }
namespace fst {
template <class FST> void Destroy(ArcIterator<FST> *aiter, MemoryPool<ArcIterator<FST>> *pool) { if (aiter) { aiter->~ArcIterator<FST>(); pool->Free(aiter); } }
// Matcher definitions.
template <class Arc> MatcherBase<Arc> *Fst<Arc>::InitMatcher(MatchType match_type) const { return nullptr; // One should just use the default matcher.
}
// FST accessors, useful in high-performance applications.
namespace internal {
// General case, requires non-abstract, 'final' methods. Use for inlining.
template <class F> inline typename F::Arc::Weight Final(const F &fst, typename F::Arc::StateId s) { return fst.F::Final(s); }
template <class F> inline ssize_t NumArcs(const F &fst, typename F::Arc::StateId s) { return fst.F::NumArcs(s); }
template <class F> inline ssize_t NumInputEpsilons(const F &fst, typename F::Arc::StateId s) { return fst.F::NumInputEpsilons(s); }
template <class F> inline ssize_t NumOutputEpsilons(const F &fst, typename F::Arc::StateId s) { return fst.F::NumOutputEpsilons(s); }
// Fst<Arc> case, abstract methods.
template <class Arc> inline typename Arc::Weight Final(const Fst<Arc> &fst, typename Arc::StateId s) { return fst.Final(s); }
template <class Arc> inline size_t NumArcs(const Fst<Arc> &fst, typename Arc::StateId s) { return fst.NumArcs(s); }
template <class Arc> inline size_t NumInputEpsilons(const Fst<Arc> &fst, typename Arc::StateId s) { return fst.NumInputEpsilons(s); }
template <class Arc> inline size_t NumOutputEpsilons(const Fst<Arc> &fst, typename Arc::StateId s) { return fst.NumOutputEpsilons(s); }
// FST implementation base.
//
// This is the recommended FST implementation base class. It will handle
// reference counts, property bits, type information and symbols.
//
// Users are discouraged, but not prohibited, from subclassing this outside the
// FST library.
//
// This class is thread-compatible except for the const SetProperties
// overload. Derived classes should be assumed to be thread-unsafe unless
// otherwise specified. Derived-class copy constructors must produce a
// thread-safe copy.
template <class Arc> class FstImpl { public: using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
FstImpl() = default;
FstImpl(const FstImpl<Arc> &impl) : properties_(impl.properties_.load(std::memory_order_relaxed)), type_(impl.type_), isymbols_(impl.isymbols_ ? impl.isymbols_->Copy() : nullptr), osymbols_(impl.osymbols_ ? impl.osymbols_->Copy() : nullptr) {}
FstImpl(FstImpl<Arc> &&impl) noexcept;
virtual ~FstImpl() = default;
FstImpl &operator=(const FstImpl &impl) { properties_.store(impl.properties_.load(std::memory_order_relaxed), std::memory_order_relaxed); type_ = impl.type_; isymbols_ = impl.isymbols_ ? impl.isymbols_->Copy() : nullptr; osymbols_ = impl.osymbols_ ? impl.osymbols_->Copy() : nullptr; return *this; }
FstImpl &operator=(FstImpl &&impl) noexcept;
const std::string &Type() const { return type_; }
void SetType(std::string_view type) { type_ = std::string(type); }
virtual uint64_t Properties() const { return properties_.load(std::memory_order_relaxed); }
virtual uint64_t Properties(uint64_t mask) const { return properties_.load(std::memory_order_relaxed) & mask; }
void SetProperties(uint64_t props) { uint64_t properties = properties_.load(std::memory_order_relaxed); properties &= kError; // kError can't be cleared.
properties |= props; properties_.store(properties, std::memory_order_relaxed); }
void SetProperties(uint64_t props, uint64_t mask) { // Unlike UpdateProperties, does not require compatibility between props
// and properties_, since it may be used to update properties after
// a mutation.
uint64_t properties = properties_.load(std::memory_order_relaxed); properties &= ~mask | kError; // kError can't be cleared.
properties |= props & mask; properties_.store(properties, std::memory_order_relaxed); }
// Allows (only) setting error bit on const FST implementations.
void SetProperties(uint64_t props, uint64_t mask) const { if (mask != kError) { FSTERROR() << "FstImpl::SetProperties() const: Can only set kError"; } properties_.fetch_or(kError, std::memory_order_relaxed); }
// Sets the subset of the properties that have changed, in a thread-safe
// manner via atomic bitwise-or..
void UpdateProperties(uint64_t props, uint64_t mask) { // If properties_ and props are compatible (for example kAcceptor and
// kNoAcceptor cannot both be set), the props can be or-ed in.
// Compatibility is ensured if props comes from ComputeProperties
// and properties_ is set correctly initially. However
// relying on properties to be set correctly is too large an
// assumption, as many places set them incorrectly.
// Therefore, we or in only the newly discovered properties.
// These cannot become inconsistent, but this means that
// incorrectly set properties will remain incorrect.
const uint64_t properties = properties_.load(std::memory_order_relaxed); DCHECK(internal::CompatProperties(properties, props)); const uint64_t old_props = properties & mask; const uint64_t old_mask = internal::KnownProperties(old_props); const uint64_t discovered_mask = mask & ~old_mask; const uint64_t discovered_props = props & discovered_mask; // It is always correct to or these bits in, but do this only when
// necessary to avoid extra stores and possible cache flushes.
if (discovered_props != 0) { properties_.fetch_or(discovered_props, std::memory_order_relaxed); } }
const SymbolTable *InputSymbols() const { return isymbols_.get(); }
const SymbolTable *OutputSymbols() const { return osymbols_.get(); }
SymbolTable *InputSymbols() { return isymbols_.get(); }
SymbolTable *OutputSymbols() { return osymbols_.get(); }
void SetInputSymbols(const SymbolTable *isyms) { isymbols_.reset(isyms ? isyms->Copy() : nullptr); }
void SetOutputSymbols(const SymbolTable *osyms) { osymbols_.reset(osyms ? osyms->Copy() : nullptr); }
// Reads header and symbols from input stream, initializes FST, and returns
// the header. If opts.header is non-null, skips reading and uses the option
// value instead. If opts.[io]symbols is non-null, reads in (if present), but
// uses the option value.
bool ReadHeader(std::istream &strm, const FstReadOptions &opts, int min_version, FstHeader *hdr);
// Writes header and symbols to output stream. If opts.header is false, skips
// writing header. If opts.[io]symbols is false, skips writing those symbols.
// This method is needed for implementations that implement Write methods.
void WriteHeader(std::ostream &strm, const FstWriteOptions &opts, int version, FstHeader *hdr) const { if (opts.write_header) { hdr->SetFstType(type_); hdr->SetArcType(Arc::Type()); hdr->SetVersion(version); hdr->SetProperties(properties_.load(std::memory_order_relaxed)); int32_t file_flags = 0; if (isymbols_ && opts.write_isymbols) { file_flags |= FstHeader::HAS_ISYMBOLS; } if (osymbols_ && opts.write_osymbols) { file_flags |= FstHeader::HAS_OSYMBOLS; } if (opts.align) file_flags |= FstHeader::IS_ALIGNED; hdr->SetFlags(file_flags); hdr->Write(strm, opts.source); } if (isymbols_ && opts.write_isymbols) isymbols_->Write(strm); if (osymbols_ && opts.write_osymbols) osymbols_->Write(strm); }
// Writes out header and symbols to output stream. If opts.header is false,
// skips writing header. If opts.[io]symbols is false, skips writing those
// symbols. `type` is the FST type being written. This method is used in the
// cross-type serialization methods Fst::WriteFst.
static void WriteFstHeader(const Fst<Arc> &fst, std::ostream &strm, const FstWriteOptions &opts, int version, std::string_view type, uint64_t properties, FstHeader *hdr) { if (opts.write_header) { hdr->SetFstType(type); hdr->SetArcType(Arc::Type()); hdr->SetVersion(version); hdr->SetProperties(properties); int32_t file_flags = 0; if (fst.InputSymbols() && opts.write_isymbols) { file_flags |= FstHeader::HAS_ISYMBOLS; } if (fst.OutputSymbols() && opts.write_osymbols) { file_flags |= FstHeader::HAS_OSYMBOLS; } if (opts.align) file_flags |= FstHeader::IS_ALIGNED; hdr->SetFlags(file_flags); hdr->Write(strm, opts.source); } if (fst.InputSymbols() && opts.write_isymbols) { fst.InputSymbols()->Write(strm); } if (fst.OutputSymbols() && opts.write_osymbols) { fst.OutputSymbols()->Write(strm); } }
// In serialization routines where the header cannot be written until after
// the machine has been serialized, this routine can be called to seek to the
// beginning of the file an rewrite the header with updated fields. It
// repositions the file pointer back at the end of the file. Returns true on
// success, false on failure.
static bool UpdateFstHeader(const Fst<Arc> &fst, std::ostream &strm, const FstWriteOptions &opts, int version, std::string_view type, uint64_t properties, FstHeader *hdr, size_t header_offset) { strm.seekp(header_offset); if (!strm) { LOG(ERROR) << "Fst::UpdateFstHeader: Write failed: " << opts.source; return false; } WriteFstHeader(fst, strm, opts, version, type, properties, hdr); if (!strm) { LOG(ERROR) << "Fst::UpdateFstHeader: Write failed: " << opts.source; return false; } strm.seekp(0, std::ios_base::end); if (!strm) { LOG(ERROR) << "Fst::UpdateFstHeader: Write failed: " << opts.source; return false; } return true; }
protected: // Use atomic so that UpdateProperties() can be thread-safe.
// This is always used with memory_order_relaxed because it's only used
// as a cache and not used to synchronize other operations.
mutable std::atomic<uint64_t> properties_ = 0; // Property bits.
private: std::string type_ = "null"; // Unique name of FST class.
std::unique_ptr<SymbolTable> isymbols_; std::unique_ptr<SymbolTable> osymbols_; };
template <class Arc> inline FstImpl<Arc>::FstImpl(FstImpl<Arc> &&) noexcept = default;
template <class Arc> inline FstImpl<Arc> &FstImpl<Arc>::operator=(FstImpl<Arc> &&) noexcept = default;
template <class Arc> bool FstImpl<Arc>::ReadHeader(std::istream &strm, const FstReadOptions &opts, int min_version, FstHeader *hdr) { if (opts.header) { *hdr = *opts.header; } else if (!hdr->Read(strm, opts.source)) { return false; } VLOG(2) << "FstImpl::ReadHeader: source: " << opts.source << ", fst_type: " << hdr->FstType() << ", arc_type: " << Arc::Type() << ", version: " << hdr->Version() << ", flags: " << hdr->GetFlags(); if (hdr->FstType() != type_) { LOG(ERROR) << "FstImpl::ReadHeader: FST not of type " << type_ << ", found " << hdr->FstType() << ": " << opts.source; return false; } if (hdr->ArcType() != Arc::Type()) { LOG(ERROR) << "FstImpl::ReadHeader: Arc not of type " << Arc::Type() << ", found " << hdr->ArcType() << ": " << opts.source; return false; } if (hdr->Version() < min_version) { LOG(ERROR) << "FstImpl::ReadHeader: Obsolete " << type_ << " FST version " << hdr->Version() << ", min_version=" << min_version << ": " << opts.source; return false; } properties_.store(hdr->Properties(), std::memory_order_relaxed); if (hdr->GetFlags() & FstHeader::HAS_ISYMBOLS) { isymbols_.reset(SymbolTable::Read(strm, opts.source)); } // Deletes input symbol table.
if (!opts.read_isymbols) SetInputSymbols(nullptr); if (hdr->GetFlags() & FstHeader::HAS_OSYMBOLS) { osymbols_.reset(SymbolTable::Read(strm, opts.source)); } // Deletes output symbol table.
if (!opts.read_osymbols) SetOutputSymbols(nullptr); if (opts.isymbols) { isymbols_.reset(opts.isymbols->Copy()); } if (opts.osymbols) { osymbols_.reset(opts.osymbols->Copy()); } return true; }
} // namespace internal
// Converts FSTs by casting their implementations, where this makes sense
// (which excludes implementations with weight-dependent virtual methods).
// Must be a friend of the FST classes involved (currently the concrete FSTs:
// ConstFst, CompactFst, and VectorFst). This can only be safely used for arc
// types that have identical storage characteristics. As with an FST
// copy constructor and Copy() method, this is a constant time operation
// (but subject to copy-on-write if it is a MutableFst and modified).
template <class IFST, class OFST> void Cast(const IFST &ifst, OFST *ofst) { using OImpl = typename OFST::Impl; ofst->impl_ = std::shared_ptr<OImpl>( ifst.impl_, reinterpret_cast<OImpl *>(ifst.impl_.get())); }
// FST serialization.
template <class Arc> std::string FstToString( const Fst<Arc> &fst, const FstWriteOptions &options = FstWriteOptions("FstToString")) { std::ostringstream ostrm; fst.Write(ostrm, options); return ostrm.str(); }
template <class Arc> void FstToString(const Fst<Arc> &fst, std::string *result) { *result = FstToString(fst); }
template <class Arc> void FstToString(const Fst<Arc> &fst, std::string *result, const FstWriteOptions &options) { *result = FstToString(fst, options); }
template <class Arc> Fst<Arc> *StringToFst(std::string_view s) { std::istringstream istrm((std::string(s))); return Fst<Arc>::Read(istrm, FstReadOptions("StringToFst")); }
} // namespace fst
#endif // FST_FST_H_
|