|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to determine if a non-epsilon label can be read as the first
// non-epsilon symbol along some path from a given state.
#ifndef FST_LABEL_REACHABLE_H_
#define FST_LABEL_REACHABLE_H_
#include <sys/types.h>
#include <cstddef>
#include <istream>
#include <memory>
#include <ostream>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/accumulator.h>
#include <fst/arcsort.h>
#include <fst/fst.h>
#include <fst/interval-set.h>
#include <fst/mutable-fst.h>
#include <fst/properties.h>
#include <fst/state-reachable.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
#include <unordered_map>
namespace fst {
// Stores shareable data for label reachable class copies.
template <typename Label> class LabelReachableData { public: using LabelIntervalSet = IntervalSet<Label>; using Interval = typename LabelIntervalSet::Interval;
explicit LabelReachableData(bool reach_input, bool keep_relabel_data = true) : reach_input_(reach_input), keep_relabel_data_(keep_relabel_data), have_relabel_data_(true), final_label_(kNoLabel) {}
~LabelReachableData() = default;
bool ReachInput() const { return reach_input_; }
std::vector<LabelIntervalSet> *MutableIntervalSets() { return &interval_sets_; }
const LabelIntervalSet &GetIntervalSet(int s) const { return interval_sets_[s]; }
int NumIntervalSets() const { return interval_sets_.size(); }
std::unordered_map<Label, Label> *MutableLabel2Index() { if (!have_relabel_data_) { FSTERROR() << "LabelReachableData: No relabeling data"; } return &label2index_; }
const std::unordered_map<Label, Label> *Label2Index() const { if (!have_relabel_data_) { FSTERROR() << "LabelReachableData: No relabeling data"; } return &label2index_; }
void SetFinalLabel(Label final_label) { final_label_ = final_label; }
Label FinalLabel() const { return final_label_; }
static LabelReachableData *Read(std::istream &istrm, const FstReadOptions &opts) { // NB: Using `new` to access private constructor.
auto data = fst::WrapUnique(new LabelReachableData()); ReadType(istrm, &data->reach_input_); ReadType(istrm, &data->keep_relabel_data_); data->have_relabel_data_ = data->keep_relabel_data_; if (data->keep_relabel_data_) ReadType(istrm, &data->label2index_); ReadType(istrm, &data->final_label_); ReadType(istrm, &data->interval_sets_); return data.release(); }
bool Write(std::ostream &ostrm, const FstWriteOptions &opts) const { WriteType(ostrm, reach_input_); WriteType(ostrm, keep_relabel_data_); if (keep_relabel_data_) WriteType(ostrm, label2index_); WriteType(ostrm, FinalLabel()); WriteType(ostrm, interval_sets_); return true; }
private: LabelReachableData() = default;
bool reach_input_; // Input labels considered?
bool keep_relabel_data_; // Save label2index_ to file?
bool have_relabel_data_; // Using label2index_?
Label final_label_; // Final label.
std::unordered_map<Label, Label> label2index_; // Finds index for a label.
std::vector<LabelIntervalSet> interval_sets_; // Interval sets per state.
};
// Apply a new state order to a vector of LabelIntervalSets. order[i] gives
// the StateId after sorting that corresponds to the StateId i before
// sorting; it must therefore be a permutation of the input FST's StateId
// sequence.
template <typename Label, typename StateId> bool StateSort(std::vector<IntervalSet<Label>> *interval_sets, const std::vector<StateId> &order) { if (order.size() != interval_sets->size()) { FSTERROR() << "StateSort: Bad order vector size: " << order.size() << ", expected: " << interval_sets->size(); return false; } std::vector<IntervalSet<Label>> reordered_interval_sets( interval_sets->size()); // TODO(jrosenstock): Use storage-efficient cycle-following algorithm
// from StateSort(MutableFst *, order).
for (StateId s = 0; s < order.size(); ++s) { reordered_interval_sets[order[s]] = std::move((*interval_sets)[s]); } *interval_sets = std::move(reordered_interval_sets); return true; }
// Apply a new state order to LabelReachableData.
template <typename Label, typename StateId> bool StateSort(LabelReachableData<Label> *data, const std::vector<StateId> &order) { return StateSort(data->MutableIntervalSets(), order); }
// Functor to find the LowerBound of a Label using an ArcIterator.
// Used by LabelReachable. Other, more efficient implementations of
// this interface specialized to certain FST types may be used instead.
template <class Arc> class LabelLowerBound { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId;
// Initializes with the FST that will later supply the ArcIterator for
// `operator()`. `reach_input` specified whether `operator()` will search
// input or output labels. If `is_copy == true`, then `fst` is a copy
// of the one previously passed to `Init`, so any expensive initialization
// can be skipped.
template <class FST> void Init(const FST &fst, bool reach_input, bool is_copy) { reach_input_ = reach_input; }
// Sets state that will be searched by `operator()`.
void SetState(StateId aiter_s) {}
// Positions `aiter` at the first Arc with `label >= match_label` in the
// half-open interval `[aiter_begin, aiter_end)`. Returns the position
// of `aiter`. `aiter` must be an iterator of the FST that was passed to
// `Init`.
template <class ArcIterator> ssize_t operator()(ArcIterator *aiter, ssize_t aiter_begin, ssize_t aiter_end, Label match_label) const { // Only needs to compute the ilabel or olabel of arcs when performing the
// binary search.
aiter->SetFlags(reach_input_ ? kArcILabelValue : kArcOLabelValue, kArcValueFlags); ssize_t low = aiter_begin; ssize_t high = aiter_end; while (low < high) { const ssize_t mid = low + (high - low) / 2; aiter->Seek(mid); auto label = reach_input_ ? aiter->Value().ilabel : aiter->Value().olabel; if (label < match_label) { low = mid + 1; } else { high = mid; } } aiter->Seek(low); aiter->SetFlags(kArcValueFlags, kArcValueFlags); return low; }
private: bool reach_input_ = false; };
// Tests reachability of labels from a given state. If reach_input is true, then
// input labels are considered, o.w. output labels are considered. To test for
// reachability from a state s, first do SetState(s), then a label l can be
// reached from state s of FST f iff Reach(r) is true where r = Relabel(l). The
// relabeling is required to ensure the consecutive ones property (C1P); this
// allows a compact representation of the reachable labels. See Section 2.3.3 of
// "A Generalized Composition Algorithm for Weighted Finite-State Transducers",
// Cyril Allauzen, Michael Riley, Johan Schalkwyk, Interspeech 2009.
// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35539.pdf
// The whole FST can be relabeled instead with Relabel(&f, reach_input) so that
// the test Reach(r) applies directly to the labels of the transformed FST f.
// The relabeled FST will also be sorted appropriately for composition.
//
// Reachablity of a final state from state s (via an epsilon path) can be
// tested with ReachFinal().
//
// Reachability can also be tested on the set of labels specified by an arc
// iterator, useful for FST composition. In particular, Reach(aiter, ...) is
// true if labels on the input (output) side of the transitions of the arc
// iterator, when iter_input is true (false), can be reached from the state s.
// The iterator labels must have already been relabeled.
//
// With the arc iterator test of reachability, the begin position, end position
// and accumulated arc weight of the matches can be returned. The optional
// template argument controls how reachable arc weights are accumulated. The
// default uses semiring Plus(). Alternative ones can be used to distribute the
// weights in composition in various ways.
template <class Arc, class Accumulator = DefaultAccumulator<Arc>, class D = LabelReachableData<typename Arc::Label>, class LB = LabelLowerBound<Arc>> class LabelReachable { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using Data = D; using LowerBound = LB;
using LabelIntervalSet = typename Data::LabelIntervalSet;
using Interval = typename LabelIntervalSet::Interval;
LabelReachable(const Fst<Arc> &fst, bool reach_input, std::unique_ptr<Accumulator> accumulator = nullptr, bool keep_relabel_data = true) : fst_(std::make_unique<VectorFst<Arc>>(fst)), s_(kNoStateId), data_(std::make_shared<Data>(reach_input, keep_relabel_data)), accumulator_(accumulator ? std::move(accumulator) : std::make_unique<Accumulator>()) { const auto ins = fst_->NumStates(); TransformFst(); FindIntervals(ins); fst_.reset(); }
explicit LabelReachable(std::shared_ptr<Data> data, std::unique_ptr<Accumulator> accumulator = nullptr) : s_(kNoStateId), data_(std::move(data)), accumulator_(accumulator ? std::move(accumulator) : std::make_unique<Accumulator>()) {}
LabelReachable(const LabelReachable &reachable, bool safe = false) : s_(kNoStateId), data_(reachable.data_), accumulator_( std::make_unique<Accumulator>(*reachable.accumulator_, safe)), lower_bound_(reachable.lower_bound_), reach_fst_input_(reachable.reach_fst_input_), error_(reachable.error_) {}
~LabelReachable() { if (ncalls_ > 0) { VLOG(2) << "# of calls: " << ncalls_; VLOG(2) << "# of intervals/call: " << (nintervals_ / ncalls_); } }
// Relabels w.r.t labels that give compact label sets.
Label Relabel(Label label) { if (label == 0 || error_) return label; const auto &label2index = *data_->Label2Index(); if (auto iter = label2index.find(label); iter != label2index.end()) { return iter->second; } auto &relabel = oov_label2index_[label]; if (!relabel) { // Adds new label.
relabel = label2index.size() + oov_label2index_.size() + 1; } return relabel; }
// Relabels FST w.r.t to labels that give compact label sets.
void Relabel(MutableFst<Arc> *fst, bool relabel_input) { for (StateIterator<MutableFst<Arc>> siter(*fst); !siter.Done(); siter.Next()) { for (MutableArcIterator<MutableFst<Arc>> aiter(fst, siter.Value()); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); if (relabel_input) { arc.ilabel = Relabel(arc.ilabel); } else { arc.olabel = Relabel(arc.olabel); } aiter.SetValue(arc); } } if (relabel_input) { ArcSort(fst, ILabelCompare<Arc>()); fst->SetInputSymbols(nullptr); } else { ArcSort(fst, OLabelCompare<Arc>()); fst->SetOutputSymbols(nullptr); } }
// Returns relabeling pairs (cf. relabel.h::Relabel()). If avoid_collisions is
// true, extra pairs are added to ensure no collisions when relabeling
// automata that have labels unseen here.
void RelabelPairs(std::vector<std::pair<Label, Label>> *pairs, bool avoid_collisions = false) { pairs->clear(); const auto &label2index = *data_->Label2Index(); // Maps labels to their new values in [1, label2index().size()].
for (const auto &kv : label2index) { if (kv.second != data_->FinalLabel()) { pairs->emplace_back(kv); } } // Maps oov labels to their values > label2index().size().
pairs->insert(pairs->end(), oov_label2index_.begin(), oov_label2index_.end()); if (avoid_collisions) { // Ensures any label in [1, label2index().size()] is mapped either
// by the above steps or to label2index() + 1 (to avoid collisions).
for (size_t i = 1; i <= label2index.size(); ++i) { const auto it = label2index.find(i); bool unmapped = it == label2index.end(); if (unmapped) unmapped = oov_label2index_.count(i) == 0; if (unmapped || it->second == data_->FinalLabel()) { pairs->emplace_back(i, label2index.size() + 1); } } } }
// Set current state. Optionally set state associated
// with arc iterator to be passed to Reach.
void SetState(StateId s, StateId aiter_s = kNoStateId) { s_ = s; if (aiter_s != kNoStateId) { accumulator_->SetState(aiter_s); if (accumulator_->Error()) error_ = true; lower_bound_.SetState(aiter_s); } }
// Can reach this label from current state?
// Original labels must be transformed by the Relabel methods above.
bool Reach(Label label) const { if (label == 0 || error_) return false; return data_->GetIntervalSet(s_).Member(label); }
// Can reach final state (via epsilon transitions) from this state?
bool ReachFinal() const { if (error_) return false; return data_->GetIntervalSet(s_).Member(data_->FinalLabel()); }
// Initialize with secondary FST to be used with Reach(Iterator,...).
// If reach_input = true, then arc input labels are considered in
// Reach(aiter, ...), o.w. output labels are considered. If copy is true, then
// the FST is a copy of the FST used in the previous call to this method
// (useful to avoid unnecessary updates).
template <class FST> void ReachInit(const FST &fst, bool reach_input, bool copy = false) { reach_fst_input_ = reach_input; if (!fst.Properties(reach_fst_input_ ? kILabelSorted : kOLabelSorted, true)) { FSTERROR() << "LabelReachable::ReachInit: Fst is not sorted"; error_ = true; } accumulator_->Init(fst, copy); if (accumulator_->Error()) error_ = true; lower_bound_.Init(fst, /*reach_input=*/reach_input, /*is_copy=*/copy); }
// Can reach any arc iterator label between iterator positions
// aiter_begin and aiter_end?
// Arc iterator labels must be transformed by the Relabel methods
// above. If compute_weight is true, user may call ReachWeight().
template <class Iterator> bool Reach(Iterator *aiter, ssize_t aiter_begin, ssize_t aiter_end, bool compute_weight) { if (error_) return false; const auto &interval_set = data_->GetIntervalSet(s_); ++ncalls_; nintervals_ += interval_set.Size(); reach_begin_ = -1; reach_end_ = -1; reach_weight_ = Weight::Zero(); const auto flags = aiter->Flags(); // Save flags to restore them on exit.
aiter->SetFlags(kArcNoCache, kArcNoCache); // Makes caching optional.
aiter->Seek(aiter_begin); if (2 * (aiter_end - aiter_begin) < interval_set.Size()) { // Checks each arc against intervals, setting arc iterator flags to only
// compute the ilabel or olabel values, since they are the only values
// required for most of the arcs processed.
aiter->SetFlags(reach_fst_input_ ? kArcILabelValue : kArcOLabelValue, kArcValueFlags); Label reach_label = kNoLabel; for (auto aiter_pos = aiter_begin; aiter_pos < aiter_end; aiter->Next(), ++aiter_pos) { const auto &arc = aiter->Value(); const auto label = reach_fst_input_ ? arc.ilabel : arc.olabel; if (label == reach_label || Reach(label)) { reach_label = label; if (reach_begin_ < 0) reach_begin_ = aiter_pos; reach_end_ = aiter_pos + 1; if (compute_weight) { if (!(aiter->Flags() & kArcWeightValue)) { // If arc.weight wasn't computed by the call to aiter->Value()
// above, we need to call aiter->Value() again after having set
// the arc iterator flags to compute the arc weight value.
aiter->SetFlags(kArcWeightValue, kArcValueFlags); const auto &arcb = aiter->Value(); // Call the accumulator.
reach_weight_ = accumulator_->Sum(reach_weight_, arcb.weight); // Only ilabel or olabel required to process the following arcs.
aiter->SetFlags( reach_fst_input_ ? kArcILabelValue : kArcOLabelValue, kArcValueFlags); } else { // Calls the accumulator.
reach_weight_ = accumulator_->Sum(reach_weight_, arc.weight); } } } } } else { // Checks each interval against arcs.
auto begin_low = aiter_begin; auto end_low = aiter_begin; for (const auto &interval : interval_set) { begin_low = lower_bound_(aiter, end_low, aiter_end, interval.begin); end_low = lower_bound_(aiter, begin_low, aiter_end, interval.end); if (end_low - begin_low > 0) { if (reach_begin_ < 0) reach_begin_ = begin_low; reach_end_ = end_low; if (compute_weight) { aiter->SetFlags(kArcWeightValue, kArcValueFlags); reach_weight_ = accumulator_->Sum(reach_weight_, aiter, begin_low, end_low); } } } } aiter->SetFlags(flags, kArcFlags); // Restores original flag values.
return reach_begin_ >= 0; }
// Returns iterator position of first matching arc.
ssize_t ReachBegin() const { return reach_begin_; }
// Returns iterator position one past last matching arc.
ssize_t ReachEnd() const { return reach_end_; }
// Return the sum of the weights for matching arcs. Valid only if
// compute_weight was true in Reach() call.
Weight ReachWeight() const { return reach_weight_; }
// Access to the relabeling map. Excludes epsilon (0) label but
// includes kNoLabel that is used internally for super-final
// transitions.
const std::unordered_map<Label, Label> &Label2Index() const { return *data_->Label2Index(); }
const Data *GetData() const { return data_.get(); }
std::shared_ptr<Data> GetSharedData() const { return data_; }
bool Error() const { return error_ || accumulator_->Error(); }
private: // Redirects labeled arcs (input or output labels determined by ReachInput())
// to new label-specific final states. Each original final state is
// redirected via a transition labeled with kNoLabel to a new
// kNoLabel-specific final state. Creates super-initial state for all states
// with zero in-degree.
void TransformFst() { auto ins = fst_->NumStates(); auto ons = ins; std::vector<ssize_t> indeg(ins, 0); // Redirects labeled arcs to new final states.
for (StateId s = 0; s < ins; ++s) { for (MutableArcIterator<VectorFst<Arc>> aiter(fst_.get(), s); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); const auto label = data_->ReachInput() ? arc.ilabel : arc.olabel; if (label) { if (auto insert_result = label2state_.emplace(label, ons); insert_result.second) { indeg.push_back(0); ++ons; } arc.nextstate = label2state_[label]; aiter.SetValue(arc); } ++indeg[arc.nextstate]; // Finds in-degrees for next step.
} // Redirects final weights to new final state.
auto final_weight = fst_->Final(s); if (final_weight != Weight::Zero()) { if (auto insert_result = label2state_.emplace(kNoLabel, ons); insert_result.second) { indeg.push_back(0); ++ons; } const auto nextstate = label2state_[kNoLabel]; fst_->EmplaceArc(s, kNoLabel, kNoLabel, std::move(final_weight), nextstate); ++indeg[nextstate]; // Finds in-degrees for next step.
fst_->SetFinal(s, Weight::Zero()); } } // Adds new final states to the FST.
while (fst_->NumStates() < ons) { StateId s = fst_->AddState(); fst_->SetFinal(s); } // Creates a super-initial state for all states with zero in-degree.
const auto start = fst_->AddState(); fst_->SetStart(start); for (StateId s = 0; s < start; ++s) { if (indeg[s] == 0) fst_->EmplaceArc(start, 0, 0, s); } }
void FindIntervals(StateId ins) { StateReachable<Arc, Label, LabelIntervalSet> state_reachable(*fst_); if (state_reachable.Error()) { error_ = true; return; } auto &state2index = state_reachable.State2Index(); auto &interval_sets = *data_->MutableIntervalSets(); interval_sets = state_reachable.IntervalSets(); interval_sets.resize(ins); auto &label2index = *data_->MutableLabel2Index(); for (const auto &kv : label2state_) { Label i = state2index[kv.second]; label2index[kv.first] = i; if (kv.first == kNoLabel) data_->SetFinalLabel(i); } label2state_.clear(); double nintervals = 0; ssize_t non_intervals = 0; for (StateId s = 0; s < ins; ++s) { nintervals += interval_sets[s].Size(); if (interval_sets[s].Size() > 1) { ++non_intervals; VLOG(3) << "state: " << s << " # of intervals: " << interval_sets[s].Size(); } } VLOG(2) << "# of states: " << ins; VLOG(2) << "# of intervals: " << nintervals; VLOG(2) << "# of intervals/state: " << nintervals / ins; VLOG(2) << "# of non-interval states: " << non_intervals; }
std::unique_ptr<VectorFst<Arc>> fst_; // Current state
StateId s_; // Finds final state for a label
std::unordered_map<Label, StateId> label2state_; // Iterator position of first match.
ssize_t reach_begin_; // Iterator position after last match.
ssize_t reach_end_; // Gives weight sum of arc iterator arcs with reachable labels.
Weight reach_weight_; // Shareable data between copies.
std::shared_ptr<Data> data_; // Sums arc weights.
std::unique_ptr<Accumulator> accumulator_; // Functor for computing LowerBound(Iterator*, begin, end, label).
LowerBound lower_bound_; // Relabeling map for OOV labels.
std::unordered_map<Label, Label> oov_label2index_; double ncalls_ = 0; double nintervals_ = 0; bool reach_fst_input_ = false; bool error_ = false; };
} // namespace fst
#endif // FST_LABEL_REACHABLE_H_
|