|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// FST memory utilities.
#ifndef FST_MEMORY_H_
#define FST_MEMORY_H_
#include <cstddef>
#include <list>
#include <memory>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fstream>
namespace fst {
// Default block allocation size.
inline constexpr int kAllocSize = 64;
// Minimum number of allocations per block.
inline constexpr int kAllocFit = 4;
// Base class for MemoryArena that allows (e.g.) MemoryArenaCollection to
// easily manipulate collections of variously sized arenas.
class MemoryArenaBase { public: virtual ~MemoryArenaBase() = default; virtual size_t Size() const = 0; };
namespace internal {
// Allocates 'size' unintialized memory chunks of size object_size from
// underlying blocks of (at least) size 'block_size * object_size'.
// All blocks are freed when this class is deleted. Result of allocate() will
// be aligned to object_size.
template <size_t object_size> class MemoryArenaImpl : public MemoryArenaBase { public: static constexpr size_t kObjectSize = object_size;
explicit MemoryArenaImpl(size_t block_size = kAllocSize) : block_size_(block_size * kObjectSize), block_pos_(0) { blocks_.push_front( fst::make_unique_for_overwrite<std::byte[]>(block_size_)); }
void *Allocate(size_t size) { const auto byte_size = size * kObjectSize; if (byte_size * kAllocFit > block_size_) { // Large block; adds new large block.
blocks_.push_back( fst::make_unique_for_overwrite<std::byte[]>(byte_size)); return blocks_.back().get(); } if (block_pos_ + byte_size > block_size_) { // Doesn't fit; adds new standard block.
block_pos_ = 0; blocks_.push_front( fst::make_unique_for_overwrite<std::byte[]>(block_size_)); } // Fits; uses current block.
auto *ptr = &blocks_.front()[block_pos_]; block_pos_ += byte_size; return ptr; }
size_t Size() const override { return kObjectSize; }
private: const size_t block_size_; // Default block size in bytes.
size_t block_pos_; // Current position in block in bytes.
std::list<std::unique_ptr<std::byte[]>> blocks_; // List of allocated blocks.
};
} // namespace internal
template <typename T> using MemoryArena = internal::MemoryArenaImpl<sizeof(T)>;
// Base class for MemoryPool that allows (e.g.) MemoryPoolCollection to easily
// manipulate collections of variously sized pools.
class MemoryPoolBase { public: virtual ~MemoryPoolBase() = default; virtual size_t Size() const = 0; };
namespace internal {
// Allocates and frees initially uninitialized memory chunks of size
// object_size. Keeps an internal list of freed chunks that are reused (as is)
// on the next allocation if available. Chunks are constructed in blocks of size
// 'pool_size'.
template <size_t object_size> class MemoryPoolImpl : public MemoryPoolBase { public: static constexpr size_t kObjectSize = object_size;
struct Link { std::byte buf[kObjectSize]; Link *next; };
explicit MemoryPoolImpl(size_t pool_size) : mem_arena_(pool_size), free_list_(nullptr) {}
void *Allocate() { Link *link; if (free_list_ == nullptr) { link = static_cast<Link *>(mem_arena_.Allocate(1)); link->next = nullptr; } else { link = free_list_; free_list_ = link->next; } return fst::implicit_cast<std::byte *>(link->buf); }
void Free(void *ptr) { if (ptr) { auto *link = static_cast<Link *>(ptr); link->next = free_list_; free_list_ = link; } }
size_t Size() const override { return kObjectSize; }
private: MemoryArena<Link> mem_arena_; Link *free_list_; // Not owned.
MemoryPoolImpl(const MemoryPoolImpl &) = delete; MemoryPoolImpl &operator=(const MemoryPoolImpl &) = delete; };
} // namespace internal
// Allocates and frees initially uninitialized memory chunks of size sizeof(T).
// All memory is freed when the class is deleted. The result of Allocate() will
// be suitably memory-aligned. Combined with placement operator new and destroy
// functions for the T class, this can be used to improve allocation efficiency.
// See nlp/fst/lib/visit.h (global new) and nlp/fst/lib/dfs-visit.h (class new)
// for examples.
template <typename T> class MemoryPool : public internal::MemoryPoolImpl<sizeof(T)> { public: // 'pool_size' specifies the size of the initial pool and how it is extended.
explicit MemoryPool(size_t pool_size = kAllocSize) : internal::MemoryPoolImpl<sizeof(T)>(pool_size) {} };
// Stores a collection of memory arenas.
class MemoryArenaCollection { public: // 'block_size' specifies the block size of the arenas.
explicit MemoryArenaCollection(size_t block_size = kAllocSize) : block_size_(block_size) {}
template <typename T> MemoryArena<T> *Arena() { if (sizeof(T) >= arenas_.size()) arenas_.resize(sizeof(T) + 1); auto &arena = arenas_[sizeof(T)]; if (arena == nullptr) { arena = std::make_unique<MemoryArena<T>>(block_size_); } return down_cast<MemoryArena<T> *>(arena.get()); }
size_t BlockSize() const { return block_size_; }
private: size_t block_size_; std::vector<std::unique_ptr<MemoryArenaBase>> arenas_; };
// Stores a collection of memory pools
class MemoryPoolCollection { public: // 'pool_size' specifies the size of initial pool and how it is extended.
explicit MemoryPoolCollection(size_t pool_size = kAllocSize) : pool_size_(pool_size) {}
template <typename T> MemoryPool<T> *Pool() { if (sizeof(T) >= pools_.size()) pools_.resize(sizeof(T) + 1); auto &pool = pools_[sizeof(T)]; if (pool == nullptr) pool = std::make_unique<MemoryPool<T>>(pool_size_); return down_cast<MemoryPool<T> *>(pool.get()); }
size_t PoolSize() const { return pool_size_; }
private: size_t pool_size_; std::vector<std::unique_ptr<MemoryPoolBase>> pools_; };
// STL allocator using memory arenas. Memory is allocated from underlying
// blocks of size 'block_size * sizeof(T)'. Memory is freed only when all
// objects using this allocator are destroyed and there is otherwise no reuse
// (unlike PoolAllocator).
//
// This allocator has object-local state so it should not be used with splicing
// or swapping operations between objects created with different allocators nor
// should it be used if copies must be thread-safe. The result of allocate()
// will be suitably memory-aligned.
template <typename T> class BlockAllocator { public: using Allocator = std::allocator<T>; using size_type = typename Allocator::size_type; using value_type = typename Allocator::value_type;
explicit BlockAllocator(size_t block_size = kAllocSize) : arenas_(std::make_shared<MemoryArenaCollection>(block_size)) {}
template <typename U> explicit BlockAllocator(const BlockAllocator<U> &arena_alloc) : arenas_(arena_alloc.Arenas()) {}
T *allocate(size_type n, const void *hint = nullptr) { if (n * kAllocFit <= kAllocSize) { return static_cast<T *>(Arena()->Allocate(n)); } else { auto allocator = Allocator(); return std::allocator_traits<Allocator>::allocate(allocator, n, hint); } }
void deallocate(T *p, size_type n) { if (n * kAllocFit > kAllocSize) Allocator().deallocate(p, n); }
std::shared_ptr<MemoryArenaCollection> Arenas() const { return arenas_; }
private: MemoryArena<T> *Arena() { return arenas_->Arena<T>(); }
std::shared_ptr<MemoryArenaCollection> arenas_; };
template <typename T, typename U> bool operator==(const BlockAllocator<T> &alloc1, const BlockAllocator<U> &alloc2) { return false; }
template <typename T, typename U> bool operator!=(const BlockAllocator<T> &alloc1, const BlockAllocator<U> &alloc2) { return true; }
// STL allocator using memory pools. Memory is allocated from underlying
// blocks of size 'block_size * sizeof(T)'. Keeps an internal list of freed
// chunks thare are reused on the next allocation.
//
// This allocator has object-local state so it should not be used with splicing
// or swapping operations between objects created with different allocators nor
// should it be used if copies must be thread-safe. The result of allocate()
// will be suitably memory-aligned.
template <typename T> class PoolAllocator { public: using Allocator = std::allocator<T>; using size_type = typename Allocator::size_type; using value_type = typename Allocator::value_type;
explicit PoolAllocator(size_t pool_size = kAllocSize) : pools_(std::make_shared<MemoryPoolCollection>(pool_size)) {}
template <typename U> explicit PoolAllocator(const PoolAllocator<U> &pool_alloc) : pools_(pool_alloc.Pools()) {}
T *allocate(size_type n, const void *hint = nullptr) { if (n == 1) { return static_cast<T *>(Pool<1>()->Allocate()); } else if (n == 2) { return static_cast<T *>(Pool<2>()->Allocate()); } else if (n <= 4) { return static_cast<T *>(Pool<4>()->Allocate()); } else if (n <= 8) { return static_cast<T *>(Pool<8>()->Allocate()); } else if (n <= 16) { return static_cast<T *>(Pool<16>()->Allocate()); } else if (n <= 32) { return static_cast<T *>(Pool<32>()->Allocate()); } else if (n <= 64) { return static_cast<T *>(Pool<64>()->Allocate()); } else { auto allocator = Allocator(); return std::allocator_traits<Allocator>::allocate(allocator, n, hint); } }
void deallocate(T *p, size_type n) { if (n == 1) { Pool<1>()->Free(p); } else if (n == 2) { Pool<2>()->Free(p); } else if (n <= 4) { Pool<4>()->Free(p); } else if (n <= 8) { Pool<8>()->Free(p); } else if (n <= 16) { Pool<16>()->Free(p); } else if (n <= 32) { Pool<32>()->Free(p); } else if (n <= 64) { Pool<64>()->Free(p); } else { Allocator().deallocate(p, n); } }
std::shared_ptr<MemoryPoolCollection> Pools() const { return pools_; }
private: template <int n> struct TN { T buf[n]; };
template <int n> MemoryPool<TN<n>> *Pool() { return pools_->Pool<TN<n>>(); }
std::shared_ptr<MemoryPoolCollection> pools_; };
template <typename T, typename U> bool operator==(const PoolAllocator<T> &alloc1, const PoolAllocator<U> &alloc2) { return false; }
template <typename T, typename U> bool operator!=(const PoolAllocator<T> &alloc1, const PoolAllocator<U> &alloc2) { return true; }
} // namespace fst
#endif // FST_MEMORY_H_
|