|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to minimize an FST.
#ifndef FST_MINIMIZE_H_
#define FST_MINIMIZE_H_
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <map>
#include <memory>
#include <queue>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/arc-map.h>
#include <fst/arc.h>
#include <fst/arcsort.h>
#include <fst/connect.h>
#include <fst/dfs-visit.h>
#include <fst/encode.h>
#include <fst/expanded-fst.h>
#include <fst/factor-weight.h>
#include <fst/fst.h>
#include <fst/mutable-fst.h>
#include <fst/partition.h>
#include <fst/properties.h>
#include <fst/push.h>
#include <fst/queue.h>
#include <fst/reverse.h>
#include <fst/reweight.h>
#include <fst/shortest-distance.h>
#include <fst/state-map.h>
#include <fst/string-weight.h>
#include <fst/symbol-table.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
#include <fst/weight.h>
#include <unordered_map>
namespace fst { namespace internal {
// Comparator for creating partition.
template <class Arc> class StateComparator { public: using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
StateComparator(const Fst<Arc> &fst, const Partition<StateId> &partition) : fst_(fst), partition_(partition) {}
// Compares state x with state y based on sort criteria.
bool operator()(const StateId x, const StateId y) const { // Checks for final state equivalence.
const auto xfinal = fst_.Final(x).Hash(); const auto yfinal = fst_.Final(y).Hash(); if (xfinal < yfinal) { return true; } else if (xfinal > yfinal) { return false; } // Checks for number of arcs.
if (fst_.NumArcs(x) < fst_.NumArcs(y)) return true; if (fst_.NumArcs(x) > fst_.NumArcs(y)) return false; // If the number of arcs are equal, checks for arc match.
for (ArcIterator<Fst<Arc>> aiter1(fst_, x), aiter2(fst_, y); !aiter1.Done() && !aiter2.Done(); aiter1.Next(), aiter2.Next()) { const auto &arc1 = aiter1.Value(); const auto &arc2 = aiter2.Value(); if (arc1.ilabel < arc2.ilabel) return true; if (arc1.ilabel > arc2.ilabel) return false; if (partition_.ClassId(arc1.nextstate) < partition_.ClassId(arc2.nextstate)) return true; if (partition_.ClassId(arc1.nextstate) > partition_.ClassId(arc2.nextstate)) return false; } return false; }
private: const Fst<Arc> &fst_; const Partition<StateId> &partition_; };
// Computes equivalence classes for cyclic unweighted acceptors. For cyclic
// minimization we use the classic Hopcroft minimization algorithm, which has
// complexity O(E log V) where E is the number of arcs and V is the number of
// states.
//
// For more information, see:
//
// Hopcroft, J. 1971. An n Log n algorithm for minimizing states in a finite
// automaton. Ms, Stanford University.
//
// Note: the original presentation of the paper was for a finite automaton (==
// deterministic, unweighted acceptor), but we also apply it to the
// nondeterministic case, where it is also applicable as long as the semiring is
// idempotent (if the semiring is not idempotent, there are some complexities
// in keeping track of the weight when there are multiple arcs to states that
// will be merged, and we don't deal with this).
template <class Arc, class Queue> class CyclicMinimizer { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using ClassId = typename Arc::StateId; using Weight = typename Arc::Weight; using RevArc = ReverseArc<Arc>; using RevArcIter = ArcIterator<Fst<RevArc>>; // TODO(wolfsonkin): Consider storing ArcIterator<> directly rather than in
// unique_ptr when ArcIterator<Fst<>> is made movable.
using RevArcIterPtr = std::unique_ptr<RevArcIter>;
explicit CyclicMinimizer(const ExpandedFst<Arc> &fst) { Initialize(fst); Compute(fst); }
const Partition<StateId> &GetPartition() const { return P_; }
private: // StateILabelHasher is a hashing object that computes a hash-function
// of an FST state that depends only on the set of ilabels on arcs leaving
// the state [note: it assumes that the arcs are ilabel-sorted].
// In order to work correctly for non-deterministic automata, multiple
// instances of the same ilabel count the same as a single instance.
class StateILabelHasher { public: explicit StateILabelHasher(const Fst<Arc> &fst) : fst_(fst) {}
using Label = typename Arc::Label; using StateId = typename Arc::StateId;
size_t operator()(const StateId s) { const size_t p1 = 7603; const size_t p2 = 433024223; size_t result = p2; size_t current_ilabel = kNoLabel; for (ArcIterator<Fst<Arc>> aiter(fst_, s); !aiter.Done(); aiter.Next()) { const Label this_ilabel = aiter.Value().ilabel; if (this_ilabel != current_ilabel) { // Ignores repeats.
result = p1 * result + this_ilabel; current_ilabel = this_ilabel; } } return result; }
private: const Fst<Arc> &fst_; };
class ArcIterCompare { public: // Compares two iterators based on their input labels.
bool operator()(const RevArcIterPtr &x, const RevArcIterPtr &y) const { const auto &xarc = x->Value(); const auto &yarc = y->Value(); return xarc.ilabel > yarc.ilabel; } };
using ArcIterQueue = std::priority_queue<RevArcIterPtr, std::vector<RevArcIterPtr>, ArcIterCompare>;
private: // Prepartitions the space into equivalence classes. We ensure that final and
// non-final states always go into different equivalence classes, and we use
// class StateILabelHasher to make sure that most of the time, states with
// different sets of ilabels on arcs leaving them, go to different partitions.
// Note: for the O(n) guarantees we don't rely on the goodness of this
// hashing function---it just provides a bonus speedup.
void PrePartition(const ExpandedFst<Arc> &fst) { VLOG(5) << "PrePartition"; StateId next_class = 0; auto num_states = fst.NumStates(); // Allocates a temporary vector to store the initial class mappings, so that
// we can allocate the classes all at once.
std::vector<StateId> state_to_initial_class(num_states); { // We maintain two maps from hash-value to class---one for final states
// (final-prob == One()) and one for non-final states
// (final-prob == Zero()). We are processing unweighted acceptors, so the
// are the only two possible values.
using HashToClassMap = std::unordered_map<size_t, StateId>; HashToClassMap hash_to_class_nonfinal; HashToClassMap hash_to_class_final; StateILabelHasher hasher(fst); for (StateId s = 0; s < num_states; ++s) { size_t hash = hasher(s); HashToClassMap &this_map = (fst.Final(s) != Weight::Zero() ? hash_to_class_final : hash_to_class_nonfinal); // Avoids two map lookups by using 'insert' instead of 'find'.
auto p = this_map.emplace(hash, next_class); state_to_initial_class[s] = p.second ? next_class++ : p.first->second; } // Lets the maps go out of scope before we allocate the classes,
// to reduce the maximum amount of memory used.
} P_.AllocateClasses(next_class); for (StateId s = 0; s < num_states; ++s) { P_.Add(s, state_to_initial_class[s]); } for (StateId c = 0; c < next_class; ++c) L_.Enqueue(c); VLOG(5) << "Initial Partition: " << P_.NumClasses(); }
// Creates inverse transition Tr_ = rev(fst), loops over states in FST and
// splits on final, creating two blocks in the partition corresponding to
// final, non-final.
void Initialize(const ExpandedFst<Arc> &fst) { // Constructs Tr.
Reverse(fst, &Tr_); static const ILabelCompare<RevArc> icomp; ArcSort(&Tr_, icomp); // Tells the partition how many elements to allocate. The first state in
// Tr_ is super-final state.
P_.Initialize(Tr_.NumStates() - 1); // Prepares initial partition.
PrePartition(fst); // Allocates arc iterator queue.
aiter_queue_ = std::make_unique<ArcIterQueue>(); } // Partitions all classes with destination C.
void Split(ClassId C) { // Prepares priority queue: opens arc iterator for each state in C, and
// inserts into priority queue.
for (PartitionIterator<StateId> siter(P_, C); !siter.Done(); siter.Next()) { const auto s = siter.Value(); if (Tr_.NumArcs(s + 1)) { aiter_queue_->push(std::make_unique<RevArcIter>(Tr_, s + 1)); } } // Now pops arc iterator from queue, splits entering equivalence class, and
// re-inserts updated iterator into queue.
Label prev_label = -1; while (!aiter_queue_->empty()) { // NB: There is no way to "move" out of a std::priority_queue given that
// the `top` accessor is a const ref. We const-cast to move out the
// unique_ptr out of the priority queue. This is fine and doesn't cause an
// issue with the invariants of the pqueue since we immediately pop after.
RevArcIterPtr aiter = std::move(const_cast<RevArcIterPtr &>(aiter_queue_->top())); aiter_queue_->pop(); if (aiter->Done()) continue; const auto &arc = aiter->Value(); auto from_state = aiter->Value().nextstate - 1; auto from_label = arc.ilabel; if (prev_label != from_label) P_.FinalizeSplit(&L_); auto from_class = P_.ClassId(from_state); if (P_.ClassSize(from_class) > 1) P_.SplitOn(from_state); prev_label = from_label; aiter->Next(); if (!aiter->Done()) aiter_queue_->push(std::move(aiter)); } P_.FinalizeSplit(&L_); }
// Main loop for Hopcroft minimization.
void Compute(const Fst<Arc> &fst) { // Processes active classes (FIFO, or FILO).
while (!L_.Empty()) { const auto C = L_.Head(); L_.Dequeue(); Split(C); // Splits on C, all labels in C.
} }
private: // Partioning of states into equivalence classes.
Partition<StateId> P_; // Set of active classes to be processed in partition P.
Queue L_; // Reverses transition function.
VectorFst<RevArc> Tr_; // Priority queue of open arc iterators for all states in the splitter
// equivalence class.
std::unique_ptr<ArcIterQueue> aiter_queue_; };
// Computes equivalence classes for acyclic FST.
//
// Complexity:
//
// O(E)
//
// where E is the number of arcs.
//
// For more information, see:
//
// Revuz, D. 1992. Minimization of acyclic deterministic automata in linear
// time. Theoretical Computer Science 92(1): 181-189.
template <class Arc> class AcyclicMinimizer { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using ClassId = typename Arc::StateId; using Weight = typename Arc::Weight;
explicit AcyclicMinimizer(const ExpandedFst<Arc> &fst) { Initialize(fst); Refine(fst); }
const Partition<StateId> &GetPartition() { return partition_; }
private: // DFS visitor to compute the height (distance) to final state.
class HeightVisitor { public: HeightVisitor() : max_height_(0), num_states_(0) {}
// Invoked before DFS visit.
void InitVisit(const Fst<Arc> &fst) {}
// Invoked when state is discovered (2nd arg is DFS tree root).
bool InitState(StateId s, StateId root) { // Extends height array and initialize height (distance) to 0.
for (StateId i = height_.size(); i <= s; ++i) height_.push_back(-1); if (s >= num_states_) num_states_ = s + 1; return true; }
// Invoked when tree arc examined (to undiscovered state).
bool TreeArc(StateId s, const Arc &arc) { return true; }
// Invoked when back arc examined (to unfinished state).
bool BackArc(StateId s, const Arc &arc) { return true; }
// Invoked when forward or cross arc examined (to finished state).
bool ForwardOrCrossArc(StateId s, const Arc &arc) { if (height_[arc.nextstate] + 1 > height_[s]) { height_[s] = height_[arc.nextstate] + 1; } return true; }
// Invoked when state finished (parent is kNoStateId for tree root).
void FinishState(StateId s, StateId parent, const Arc *parent_arc) { if (height_[s] == -1) height_[s] = 0; const auto h = height_[s] + 1; if (parent >= 0) { if (h > height_[parent]) height_[parent] = h; if (h > max_height_) max_height_ = h; } }
// Invoked after DFS visit.
void FinishVisit() {}
size_t max_height() const { return max_height_; }
const std::vector<StateId> &height() const { return height_; }
size_t num_states() const { return num_states_; }
private: std::vector<StateId> height_; size_t max_height_; size_t num_states_; };
private: // Cluster states according to height (distance to final state)
void Initialize(const Fst<Arc> &fst) { // Computes height (distance to final state).
HeightVisitor hvisitor; DfsVisit(fst, &hvisitor); // Creates initial partition based on height.
partition_.Initialize(hvisitor.num_states()); partition_.AllocateClasses(hvisitor.max_height() + 1); const auto &hstates = hvisitor.height(); for (StateId s = 0; s < hstates.size(); ++s) partition_.Add(s, hstates[s]); }
// Refines states based on arc sort (out degree, arc equivalence).
void Refine(const Fst<Arc> &fst) { using EquivalenceMap = std::map<StateId, StateId, StateComparator<Arc>>; StateComparator<Arc> comp(fst, partition_); // Starts with tail (height = 0).
auto height = partition_.NumClasses(); for (StateId h = 0; h < height; ++h) { EquivalenceMap equiv_classes(comp); // Sorts states within equivalence class.
PartitionIterator<StateId> siter(partition_, h); equiv_classes[siter.Value()] = h; for (siter.Next(); !siter.Done(); siter.Next()) { auto insert_result = equiv_classes.emplace(siter.Value(), kNoStateId); if (insert_result.second) { insert_result.first->second = partition_.AddClass(); } } // Creates refined partition.
for (siter.Reset(); !siter.Done();) { const auto s = siter.Value(); const auto old_class = partition_.ClassId(s); const auto new_class = equiv_classes[s]; // A move operation can invalidate the iterator, so we first update
// the iterator to the next element before we move the current element
// out of the list.
siter.Next(); if (old_class != new_class) partition_.Move(s, new_class); } } }
private: Partition<StateId> partition_; };
// Given a partition and a Mutable FST, merges states of Fst in place (i.e.,
// destructively). Merging works by taking the first state in a class of the
// partition to be the representative state for the class. Each arc is then
// reconnected to this state. All states in the class are merged by adding
// their arcs to the representative state.
template <class Arc> void MergeStates(const Partition<typename Arc::StateId> &partition, MutableFst<Arc> *fst) { using StateId = typename Arc::StateId; std::vector<StateId> state_map(partition.NumClasses()); for (StateId i = 0; i < partition.NumClasses(); ++i) { PartitionIterator<StateId> siter(partition, i); state_map[i] = siter.Value(); // First state in partition.
} // Relabels destination states.
for (StateId c = 0; c < partition.NumClasses(); ++c) { for (PartitionIterator<StateId> siter(partition, c); !siter.Done(); siter.Next()) { const auto s = siter.Value(); for (MutableArcIterator<MutableFst<Arc>> aiter(fst, s); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); arc.nextstate = state_map[partition.ClassId(arc.nextstate)]; if (s == state_map[c]) { // For the first state, just sets destination.
aiter.SetValue(arc); } else { fst->AddArc(state_map[c], std::move(arc)); } } } } fst->SetStart(state_map[partition.ClassId(fst->Start())]); Connect(fst); }
template <class Arc> void AcceptorMinimize(MutableFst<Arc> *fst) { // Connects FST before minimization, handles disconnected states.
Connect(fst); if (fst->Start() == kNoStateId) return; // The Revuz acyclic algorithm won't work for nondeterministic inputs, so if
// the input is nondeterministic, we force the use of the Hopcroft cyclic
// algorithm instead.
static constexpr auto revuz_props = kAcyclic | kIDeterministic; if (fst->Properties(revuz_props, true) == revuz_props) { // Acyclic minimization (Revuz).
VLOG(2) << "Acyclic minimization"; static const ILabelCompare<Arc> comp; ArcSort(fst, comp); AcyclicMinimizer<Arc> minimizer(*fst); MergeStates(minimizer.GetPartition(), fst); } else { // Either the FST has cycles, or it's generated from non-deterministic input
// (which the Revuz algorithm can't handle), so use the cyclic minimization
// algorithm of Hopcroft.
VLOG(2) << "Cyclic minimization"; CyclicMinimizer<Arc, LifoQueue<typename Arc::StateId>> minimizer(*fst); MergeStates(minimizer.GetPartition(), fst); } // Merges in appropriate semiring
ArcUniqueMapper<Arc> mapper(*fst); StateMap(fst, mapper); } } // namespace internal
// In place minimization of deterministic weighted automata and transducers, and
// also non-deterministic ones if they use an idempotent semiring. For
// transducers, if the 'sfst' argument is not null, the algorithm produces a
// compact factorization of the minimal transducer.
//
// In the acyclic deterministic case, we use an algorithm from Revuz; this has
// complexity O(e).
//
// In cyclic and non-deterministic cases, we use the classical Hopcroft
// minimization (which was presented for the deterministic case but which
// also works for non-deterministic FSTs); this has complexity O(e log v).
template <class Arc> void Minimize(MutableFst<Arc> *fst, MutableFst<Arc> *sfst = nullptr, float delta = kShortestDelta, bool allow_nondet = false) { using Weight = typename Arc::Weight; static constexpr auto minimize_props = kAcceptor | kIDeterministic | kWeighted | kUnweighted; const auto props = fst->Properties(minimize_props, true); if (!(props & kIDeterministic)) { // Our approach to minimization of non-deterministic FSTs will only work in
// idempotent semirings---for non-deterministic inputs, a state could have
// multiple transitions to states that will get merged, and we'd have to
// sum their weights. The algorithm doesn't handle that.
if constexpr (!IsIdempotent<Weight>::value) { fst->SetProperties(kError, kError); FSTERROR() << "Cannot minimize a non-deterministic FST over a " "non-idempotent semiring"; return; } else if (!allow_nondet) { fst->SetProperties(kError, kError); FSTERROR() << "Refusing to minimize a non-deterministic FST with " << "allow_nondet = false"; return; } } if ((props & kAcceptor) != kAcceptor) { // Transducer.
VectorFst<GallicArc<Arc, GALLIC_LEFT>> gfst; ArcMap(*fst, &gfst, ToGallicMapper<Arc, GALLIC_LEFT>()); fst->DeleteStates(); gfst.SetProperties(kAcceptor, kAcceptor); Push(&gfst, REWEIGHT_TO_INITIAL, delta); ArcMap(&gfst, QuantizeMapper<GallicArc<Arc, GALLIC_LEFT>>(delta)); EncodeMapper<GallicArc<Arc, GALLIC_LEFT>> encoder(kEncodeLabels | kEncodeWeights); Encode(&gfst, &encoder); internal::AcceptorMinimize(&gfst); Decode(&gfst, encoder); if (!sfst) { FactorWeightFst<GallicArc<Arc, GALLIC_LEFT>, GallicFactor<typename Arc::Label, Weight, GALLIC_LEFT>> fwfst(gfst); std::unique_ptr<SymbolTable> osyms( fst->OutputSymbols() ? fst->OutputSymbols()->Copy() : nullptr); ArcMap(fwfst, fst, FromGallicMapper<Arc, GALLIC_LEFT>()); fst->SetOutputSymbols(osyms.get()); } else { sfst->SetOutputSymbols(fst->OutputSymbols()); GallicToNewSymbolsMapper<Arc, GALLIC_LEFT> mapper(sfst); ArcMap(gfst, fst, &mapper); fst->SetOutputSymbols(sfst->InputSymbols()); } } else if ((props & kWeighted) == kWeighted) { // Weighted acceptor.
Push(fst, REWEIGHT_TO_INITIAL, delta); ArcMap(fst, QuantizeMapper<Arc>(delta)); // We encode labels even though this is already an acceptor because weight
// encoding gives us a transducer.
EncodeMapper<Arc> encoder(kEncodeLabels | kEncodeWeights); Encode(fst, &encoder); internal::AcceptorMinimize(fst); Decode(fst, encoder); } else { // Unweighted acceptor.
internal::AcceptorMinimize(fst); } }
} // namespace fst
#endif // FST_MINIMIZE_H_
|