|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Cartesian power weight semiring operation definitions.
#ifndef FST_POWER_WEIGHT_H_
#define FST_POWER_WEIGHT_H_
#include <cstddef>
#include <cstdint>
#include <random>
#include <string>
#include <fst/tuple-weight.h>
#include <fst/weight.h>
namespace fst {
// Cartesian power semiring: W ^ n
//
// Forms:
// - a left semimodule when W is a left semiring,
// - a right semimodule when W is a right semiring,
// - a bisemimodule when W is a semiring,
// the free semimodule of rank n over W
// The Times operation is overloaded to provide the left and right scalar
// products.
template <class W, size_t n> class PowerWeight : public TupleWeight<W, n> { public: using ReverseWeight = PowerWeight<typename W::ReverseWeight, n>;
PowerWeight() = default;
explicit PowerWeight(const TupleWeight<W, n> &weight) : TupleWeight<W, n>(weight) {}
template <class Iterator> PowerWeight(Iterator begin, Iterator end) : TupleWeight<W, n>(begin, end) {}
// Initialize component `index` to `weight`; initialize all other components
// to `default_weight`
PowerWeight(size_t index, const W &weight, const W &default_weight = W::Zero()) : TupleWeight<W, n>(index, weight, default_weight) {}
static const PowerWeight &Zero() { static const PowerWeight zero(TupleWeight<W, n>::Zero()); return zero; }
static const PowerWeight &One() { static const PowerWeight one(TupleWeight<W, n>::One()); return one; }
static const PowerWeight &NoWeight() { static const PowerWeight no_weight(TupleWeight<W, n>::NoWeight()); return no_weight; }
static const std::string &Type() { static const std::string *const type = new std::string(W::Type() + "_^" + std::to_string(n)); return *type; }
static constexpr uint64_t Properties() { return W::Properties() & (kLeftSemiring | kRightSemiring | kCommutative | kIdempotent); }
PowerWeight Quantize(float delta = kDelta) const { return PowerWeight(TupleWeight<W, n>::Quantize(delta)); }
ReverseWeight Reverse() const { return ReverseWeight(TupleWeight<W, n>::Reverse()); } };
// Semiring plus operation.
template <class W, size_t n> inline PowerWeight<W, n> Plus(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Plus(w1.Value(i), w2.Value(i))); } return result; }
// Semiring times operation.
template <class W, size_t n> inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Times(w1.Value(i), w2.Value(i))); } return result; }
// Semiring divide operation.
template <class W, size_t n> inline PowerWeight<W, n> Divide(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2, DivideType type = DIVIDE_ANY) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Divide(w1.Value(i), w2.Value(i), type)); } return result; }
// Semimodule left scalar product.
template <class W, size_t n> inline PowerWeight<W, n> Times(const W &scalar, const PowerWeight<W, n> &weight) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Times(scalar, weight.Value(i))); } return result; }
// Semimodule right scalar product.
template <class W, size_t n> inline PowerWeight<W, n> Times(const PowerWeight<W, n> &weight, const W &scalar) { PowerWeight<W, n> result; for (size_t i = 0; i < n; ++i) { result.SetValue(i, Times(weight.Value(i), scalar)); } return result; }
// Semimodule dot product.
template <class W, size_t n> inline W DotProduct(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) { W result(W::Zero()); for (size_t i = 0; i < n; ++i) { result = Plus(result, Times(w1.Value(i), w2.Value(i))); } return result; }
// This function object generates weights over the Cartesian power of rank
// n over the underlying weight. This is intended primarily for testing.
template <class W, size_t n> class WeightGenerate<PowerWeight<W, n>> { public: using Weight = PowerWeight<W, n>; using Generate = WeightGenerate<W>;
explicit WeightGenerate(uint64_t seed = std::random_device()(), bool allow_zero = true) : generate_(seed, allow_zero) {}
Weight operator()() const { Weight result; for (size_t i = 0; i < n; ++i) result.SetValue(i, generate_()); return result; }
private: const Generate generate_; };
} // namespace fst
#endif // FST_POWER_WEIGHT_H_
|