|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Tests if two FSTS are equivalent by checking if random strings from one FST
// are transduced the same by both FSTs.
#ifndef FST_RANDEQUIVALENT_H_
#define FST_RANDEQUIVALENT_H_
#include <cstdint>
#include <limits>
#include <random>
#include <fst/log.h>
#include <fst/arcsort.h>
#include <fst/compose.h>
#include <fst/connect.h>
#include <fst/fst.h>
#include <fst/project.h>
#include <fst/properties.h>
#include <fst/randgen.h>
#include <fst/shortest-distance.h>
#include <fst/symbol-table.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
#include <fst/weight.h>
namespace fst {
// Test if two FSTs are stochastically equivalent by randomly generating
// random paths through the FSTs.
//
// For each randomly generated path, the algorithm computes for each
// of the two FSTs the sum of the weights of all the successful paths
// sharing the same input and output labels as the considered randomly
// generated path and checks that these two values are within a user-specified
// delta. Returns optional error value (when FST_FLAGS_error_fatal = false).
template <class Arc, class ArcSelector> bool RandEquivalent(const Fst<Arc> &fst1, const Fst<Arc> &fst2, int32_t npath, const RandGenOptions<ArcSelector> &opts, float delta = kDelta, uint64_t seed = std::random_device()(), bool *error = nullptr) { using Weight = typename Arc::Weight; if (error) *error = false; // Checks that the symbol table are compatible.
if (!CompatSymbols(fst1.InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1.OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "RandEquivalent: Input/output symbol tables of 1st " << "argument do not match input/output symbol tables of 2nd " << "argument"; if (error) *error = true; return false; } static const ILabelCompare<Arc> icomp; static const OLabelCompare<Arc> ocomp; VectorFst<Arc> sfst1(fst1); VectorFst<Arc> sfst2(fst2); Connect(&sfst1); Connect(&sfst2); ArcSort(&sfst1, icomp); ArcSort(&sfst2, icomp); bool result = true; std::mt19937 rand(seed); std::bernoulli_distribution coin(.5); for (int32_t n = 0; n < npath; ++n) { VectorFst<Arc> path; const auto &fst = coin(rand) ? sfst1 : sfst2; RandGen(fst, &path, opts); VectorFst<Arc> ipath(path); VectorFst<Arc> opath(path); Project(&ipath, ProjectType::INPUT); Project(&opath, ProjectType::OUTPUT); VectorFst<Arc> cfst1, pfst1; Compose(ipath, sfst1, &cfst1); ArcSort(&cfst1, ocomp); Compose(cfst1, opath, &pfst1); // Gives up if there are epsilon cycles in a non-idempotent semiring.
if (!IsIdempotent<Weight>::value && pfst1.Properties(kCyclic, true)) { continue; } const auto sum1 = ShortestDistance(pfst1); VectorFst<Arc> cfst2; Compose(ipath, sfst2, &cfst2); ArcSort(&cfst2, ocomp); VectorFst<Arc> pfst2; Compose(cfst2, opath, &pfst2); // Gives up if there are epsilon cycles in a non-idempotent semiring.
if (!IsIdempotent<Weight>::value && pfst2.Properties(kCyclic, true)) { continue; } const auto sum2 = ShortestDistance(pfst2); if (!ApproxEqual(sum1, sum2, delta)) { VLOG(1) << "Sum1 = " << sum1; VLOG(1) << "Sum2 = " << sum2; result = false; break; } } if (fst1.Properties(kError, false) || fst2.Properties(kError, false)) { if (error) *error = true; return false; } return result; }
// Tests if two FSTs are equivalent by randomly generating a nnpath paths
// (no longer than the path_length) using a user-specified seed, optionally
// indicating an error setting an optional error argument to true.
template <class Arc> bool RandEquivalent(const Fst<Arc> &fst1, const Fst<Arc> &fst2, int32_t npath, float delta = kDelta, uint64_t seed = std::random_device()(), int32_t max_length = std::numeric_limits<int32_t>::max(), bool *error = nullptr) { const UniformArcSelector<Arc> uniform_selector(seed); const RandGenOptions<UniformArcSelector<Arc>> opts(uniform_selector, max_length); return RandEquivalent(fst1, fst2, npath, opts, delta, seed, error); }
} // namespace fst
#endif // FST_RANDEQUIVALENT_H_
|