|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes for the recursive replacement of FSTs.
#ifndef FST_REPLACE_H_
#define FST_REPLACE_H_
#include <sys/types.h>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/arc.h>
#include <fst/bi-table.h>
#include <fst/cache.h>
#include <fst/expanded-fst.h>
#include <fst/float-weight.h>
#include <fst/fst-decl.h> // For optional argument declarations.
#include <fst/fst.h>
#include <fst/impl-to-fst.h>
#include <fst/matcher.h>
#include <fst/mutable-fst.h>
#include <fst/properties.h>
#include <fst/replace-util.h>
#include <fst/state-table.h>
#include <fst/symbol-table.h>
#include <fst/util.h>
#include <unordered_map>
namespace fst {
// Replace state tables have the form:
//
// template <class Arc, class P>
// class ReplaceStateTable {
// public:
// using Label = typename Arc::Label Label;
// using StateId = typename Arc::StateId;
//
// using PrefixId = P;
// using StateTuple = ReplaceStateTuple<StateId, PrefixId>;
// using StackPrefix = ReplaceStackPrefix<Label, StateId>;
//
// // Required constructor.
// ReplaceStateTable(
// const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_list,
// Label root);
//
// // Required copy constructor that does not copy state.
// ReplaceStateTable(const ReplaceStateTable<Arc, PrefixId> &table);
//
// // Looks up state ID by tuple, adding it if it doesn't exist.
// StateId FindState(const StateTuple &tuple);
//
// // Looks up state tuple by ID.
// const StateTuple &Tuple(StateId id) const;
//
// // Lookus up prefix ID by stack prefix, adding it if it doesn't exist.
// PrefixId FindPrefixId(const StackPrefix &stack_prefix);
//
// // Looks up stack prefix by ID.
// const StackPrefix &GetStackPrefix(PrefixId id) const;
// };
// Tuple that uniquely defines a state in replace.
template <class S, class P> struct ReplaceStateTuple { using StateId = S; using PrefixId = P;
ReplaceStateTuple(PrefixId prefix_id = -1, StateId fst_id = kNoStateId, StateId fst_state = kNoStateId) : prefix_id(prefix_id), fst_id(fst_id), fst_state(fst_state) {}
template <typename H> friend H AbslHashValue(H h, const ReplaceStateTuple &t) { return H::combine(std::move(h), t.prefix_id, t.fst_id, t.fst_state); }
PrefixId prefix_id; // Index in prefix table.
StateId fst_id; // Current FST being walked.
StateId fst_state; // Current state in FST being walked (not to be
// confused with the thse StateId of the combined FST).
};
// Equality of replace state tuples.
template <class StateId, class PrefixId> inline bool operator==(const ReplaceStateTuple<StateId, PrefixId> &x, const ReplaceStateTuple<StateId, PrefixId> &y) { return x.prefix_id == y.prefix_id && x.fst_id == y.fst_id && x.fst_state == y.fst_state; }
// Functor returning true for tuples corresponding to states in the root FST.
template <class StateId, class PrefixId> class ReplaceRootSelector { public: bool operator()(const ReplaceStateTuple<StateId, PrefixId> &tuple) const { return tuple.prefix_id == 0; } };
// Functor for fingerprinting replace state tuples.
template <class StateId, class PrefixId> class ReplaceFingerprint { public: explicit ReplaceFingerprint(const std::vector<uint64_t> *size_array) : size_array_(size_array) {}
uint64_t operator()(const ReplaceStateTuple<StateId, PrefixId> &tuple) const { return tuple.prefix_id * size_array_->back() + size_array_->at(tuple.fst_id - 1) + tuple.fst_state; }
private: const std::vector<uint64_t> *size_array_; };
// Useful when the fst_state uniquely define the tuple.
template <class StateId, class PrefixId> class ReplaceFstStateFingerprint { public: uint64_t operator()(const ReplaceStateTuple<StateId, PrefixId> &tuple) const { return tuple.fst_state; } };
// A generic hash function for replace state tuples.
template <typename S, typename P> class ReplaceHash { public: size_t operator()(const ReplaceStateTuple<S, P> &t) const { // We want three prime numbers that are all reasonably large and whose
// differences are far from each other. (E.g., we want prime1-prime0 to be
// far from prime2-prime1). It would be safer still to use large prime
// numbers (i.e., prime numbers that use all 64 bits on a 64-bit machine and
// all 32-bits on a 32-bit machine), so that all 64-bits (respectively
// 32-bits) of the resulting hash would look random. However, these
// modest-sized prime numbers are good enough for hash tables (such as
// std::unordered_set and std::unordered_set) that use the low-order bits
// of the hash.
//
// It is important that all three components are multiplied by a prime
// number. E.g., don't compute
// t.prefix_id + t.fst_id * prime1 + t.fst_state * prime2
// which is just the identity on t.prefix_id. Using the identity will
// result in long probe sequences in open-addressed hash tables (such as
// std::unordered_map).
static constexpr size_t prime0 = 7853; static constexpr size_t prime1 = 9001; static constexpr size_t prime2 = 100003; return t.prefix_id * prime0 + t.fst_id * prime1 + t.fst_state * prime2; } };
// Container for stack prefix.
template <class Label, class StateId> class ReplaceStackPrefix { public: struct PrefixTuple { PrefixTuple(Label fst_id = kNoLabel, StateId nextstate = kNoStateId) : fst_id(fst_id), nextstate(nextstate) {}
Label fst_id; StateId nextstate; };
ReplaceStackPrefix() = default;
ReplaceStackPrefix(const ReplaceStackPrefix &other) : prefix_(other.prefix_) {}
void Push(StateId fst_id, StateId nextstate) { prefix_.push_back(PrefixTuple(fst_id, nextstate)); }
void Pop() { prefix_.pop_back(); }
const PrefixTuple &Top() const { return prefix_[prefix_.size() - 1]; }
size_t Depth() const { return prefix_.size(); }
public: std::vector<PrefixTuple> prefix_; };
// Equality stack prefix classes.
template <class Label, class StateId> inline bool operator==(const ReplaceStackPrefix<Label, StateId> &x, const ReplaceStackPrefix<Label, StateId> &y) { if (x.prefix_.size() != y.prefix_.size()) return false; for (size_t i = 0; i < x.prefix_.size(); ++i) { if (x.prefix_[i].fst_id != y.prefix_[i].fst_id || x.prefix_[i].nextstate != y.prefix_[i].nextstate) { return false; } } return true; }
// Hash function for stack prefix to prefix id.
template <class Label, class StateId> class ReplaceStackPrefixHash { public: size_t operator()(const ReplaceStackPrefix<Label, StateId> &prefix) const { size_t sum = 0; for (const auto &pair : prefix.prefix_) { static constexpr size_t prime = 7863; sum += pair.fst_id + pair.nextstate * prime; } return sum; } };
// Replace state tables.
// A two-level state table for replace. Warning: calls CountStates to compute
// the number of states of each component FST.
template <class Arc, class P = ssize_t> class VectorHashReplaceStateTable { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId;
using PrefixId = P;
using StateTuple = ReplaceStateTuple<StateId, PrefixId>; using StateTable = VectorHashStateTable<ReplaceStateTuple<StateId, PrefixId>, ReplaceRootSelector<StateId, PrefixId>, ReplaceFstStateFingerprint<StateId, PrefixId>, ReplaceFingerprint<StateId, PrefixId>>; using StackPrefix = ReplaceStackPrefix<Label, StateId>; using StackPrefixTable = CompactHashBiTable<PrefixId, StackPrefix, ReplaceStackPrefixHash<Label, StateId>>;
VectorHashReplaceStateTable( const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_list, Label root) : root_size_(0) { size_array_.push_back(0); for (const auto &[label, fst] : fst_list) { if (label == root) { root_size_ = CountStates(*fst); size_array_.push_back(size_array_.back()); } else { size_array_.push_back(size_array_.back() + CountStates(*fst)); } } state_table_ = std::make_unique<StateTable>( ReplaceRootSelector<StateId, PrefixId>(), ReplaceFstStateFingerprint<StateId, PrefixId>(), ReplaceFingerprint<StateId, PrefixId>(&size_array_), root_size_, root_size_ + size_array_.back()); }
VectorHashReplaceStateTable( const VectorHashReplaceStateTable<Arc, PrefixId> &table) : root_size_(table.root_size_), size_array_(table.size_array_), prefix_table_(table.prefix_table_) { state_table_ = std::make_unique<StateTable>( ReplaceRootSelector<StateId, PrefixId>(), ReplaceFstStateFingerprint<StateId, PrefixId>(), ReplaceFingerprint<StateId, PrefixId>(&size_array_), root_size_, root_size_ + size_array_.back()); }
StateId FindState(const StateTuple &tuple) { return state_table_->FindState(tuple); }
const StateTuple &Tuple(StateId id) const { return state_table_->Tuple(id); }
PrefixId FindPrefixId(const StackPrefix &prefix) { return prefix_table_.FindId(prefix); }
const StackPrefix &GetStackPrefix(PrefixId id) const { return prefix_table_.FindEntry(id); }
private: StateId root_size_; std::vector<uint64_t> size_array_; std::unique_ptr<StateTable> state_table_; StackPrefixTable prefix_table_; };
// Default replace state table.
template <class Arc, class P /* = size_t */> class DefaultReplaceStateTable : public CompactHashStateTable<ReplaceStateTuple<typename Arc::StateId, P>, ReplaceHash<typename Arc::StateId, P>> { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId;
using PrefixId = P; using StateTuple = ReplaceStateTuple<StateId, PrefixId>; using StateTable = CompactHashStateTable<StateTuple, ReplaceHash<StateId, PrefixId>>; using StackPrefix = ReplaceStackPrefix<Label, StateId>; using StackPrefixTable = CompactHashBiTable<PrefixId, StackPrefix, ReplaceStackPrefixHash<Label, StateId>>;
using StateTable::FindState; using StateTable::Tuple;
DefaultReplaceStateTable( const std::vector<std::pair<Label, const Fst<Arc> *>> &, Label) {}
DefaultReplaceStateTable(const DefaultReplaceStateTable<Arc, PrefixId> &table) : StateTable(), prefix_table_(table.prefix_table_) {}
PrefixId FindPrefixId(const StackPrefix &prefix) { return prefix_table_.FindId(prefix); }
const StackPrefix &GetStackPrefix(PrefixId id) const { return prefix_table_.FindEntry(id); }
private: StackPrefixTable prefix_table_; };
// By default ReplaceFst will copy the input label of the replace arc.
// The call_label_type and return_label_type options specify how to manage
// the labels of the call arc and the return arc of the replace FST
template <class Arc, class StateTable = DefaultReplaceStateTable<Arc>, class CacheStore = DefaultCacheStore<Arc>> struct ReplaceFstOptions : CacheImplOptions<CacheStore> { using Label = typename Arc::Label;
// Index of root rule for expansion.
Label root; // How to label call arc.
ReplaceLabelType call_label_type = REPLACE_LABEL_INPUT; // How to label return arc.
ReplaceLabelType return_label_type = REPLACE_LABEL_NEITHER; // Specifies output label to put on call arc; if kNoLabel, use existing label
// on call arc. Otherwise, use this field as the output label.
Label call_output_label = kNoLabel; // Specifies label to put on return arc.
Label return_label = 0; // Take ownership of input FSTs?
bool take_ownership = false; // Pointer to optional pre-constructed state table.
StateTable *state_table = nullptr;
explicit ReplaceFstOptions(const CacheImplOptions<CacheStore> &opts, Label root = kNoLabel) : CacheImplOptions<CacheStore>(opts), root(root) {}
explicit ReplaceFstOptions(const CacheOptions &opts, Label root = kNoLabel) : CacheImplOptions<CacheStore>(opts), root(root) {}
// FIXME(kbg): There are too many constructors here. Come up with a consistent
// position for call_output_label (probably the very end) so that it is
// possible to express all the remaining constructors with a single
// default-argument constructor. Also move clients off of the "backwards
// compatibility" constructor, for good.
explicit ReplaceFstOptions(Label root) : root(root) {}
explicit ReplaceFstOptions(Label root, ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, Label return_label) : root(root), call_label_type(call_label_type), return_label_type(return_label_type), return_label(return_label) {}
explicit ReplaceFstOptions(Label root, ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, Label call_output_label, Label return_label) : root(root), call_label_type(call_label_type), return_label_type(return_label_type), call_output_label(call_output_label), return_label(return_label) {}
explicit ReplaceFstOptions(const ReplaceUtilOptions &opts) : ReplaceFstOptions(opts.root, opts.call_label_type, opts.return_label_type, opts.return_label) {}
ReplaceFstOptions() : root(kNoLabel) {}
// For backwards compatibility.
ReplaceFstOptions(int64_t root, bool epsilon_replace_arc) : root(root), call_label_type(epsilon_replace_arc ? REPLACE_LABEL_NEITHER : REPLACE_LABEL_INPUT), call_output_label(epsilon_replace_arc ? 0 : kNoLabel) {} };
// Forward declaration.
template <class Arc, class StateTable, class CacheStore> class ReplaceFstMatcher;
template <class Arc> using FstList = std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>>;
// Returns true if label type on arc results in epsilon input label.
inline bool EpsilonOnInput(ReplaceLabelType label_type) { return label_type == REPLACE_LABEL_NEITHER || label_type == REPLACE_LABEL_OUTPUT; }
// Returns true if label type on arc results in epsilon input label.
inline bool EpsilonOnOutput(ReplaceLabelType label_type) { return label_type == REPLACE_LABEL_NEITHER || label_type == REPLACE_LABEL_INPUT; }
// Returns true if for either the call or return arc ilabel != olabel.
template <class Label> bool ReplaceTransducer(ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, Label call_output_label) { return call_label_type == REPLACE_LABEL_INPUT || call_label_type == REPLACE_LABEL_OUTPUT || (call_label_type == REPLACE_LABEL_BOTH && call_output_label != kNoLabel) || return_label_type == REPLACE_LABEL_INPUT || return_label_type == REPLACE_LABEL_OUTPUT; }
template <class Arc> uint64_t ReplaceFstProperties(typename Arc::Label root_label, const FstList<Arc> &fst_list, ReplaceLabelType call_label_type, ReplaceLabelType return_label_type, typename Arc::Label call_output_label, bool *sorted_and_non_empty) { using Label = typename Arc::Label; std::vector<uint64_t> inprops; bool all_ilabel_sorted = true; bool all_olabel_sorted = true; bool all_non_empty = true; // All nonterminals are negative?
bool all_negative = true; // All nonterminals are positive and form a dense range containing 1?
bool dense_range = true; Label root_fst_idx = 0; for (Label i = 0; i < fst_list.size(); ++i) { const auto label = fst_list[i].first; if (label >= 0) all_negative = false; if (label > fst_list.size() || label <= 0) dense_range = false; if (label == root_label) root_fst_idx = i; const auto *fst = fst_list[i].second; if (fst->Start() == kNoStateId) all_non_empty = false; if (!fst->Properties(kILabelSorted, false)) all_ilabel_sorted = false; if (!fst->Properties(kOLabelSorted, false)) all_olabel_sorted = false; inprops.push_back(fst->Properties(kCopyProperties, false)); } const auto props = ReplaceProperties( inprops, root_fst_idx, EpsilonOnInput(call_label_type), EpsilonOnInput(return_label_type), EpsilonOnOutput(call_label_type), EpsilonOnOutput(return_label_type), ReplaceTransducer(call_label_type, return_label_type, call_output_label), all_non_empty, all_ilabel_sorted, all_olabel_sorted, all_negative || dense_range); const bool sorted = props & (kILabelSorted | kOLabelSorted); *sorted_and_non_empty = all_non_empty && sorted; return props; }
namespace internal {
// The replace implementation class supports a dynamic expansion of a recursive
// transition network represented as label/FST pairs with dynamic replacable
// arcs.
template <class Arc, class StateTable, class CacheStore> class ReplaceFstImpl : public CacheBaseImpl<typename CacheStore::State, CacheStore> { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
using State = typename CacheStore::State; using CacheImpl = CacheBaseImpl<State, CacheStore>; using PrefixId = typename StateTable::PrefixId; using StateTuple = ReplaceStateTuple<StateId, PrefixId>; using StackPrefix = ReplaceStackPrefix<Label, StateId>; using NonTerminalHash = std::unordered_map<Label, Label>;
using FstImpl<Arc>::SetType; using FstImpl<Arc>::SetProperties; using FstImpl<Arc>::WriteHeader; using FstImpl<Arc>::SetInputSymbols; using FstImpl<Arc>::SetOutputSymbols; using FstImpl<Arc>::InputSymbols; using FstImpl<Arc>::OutputSymbols;
using CacheImpl::HasArcs; using CacheImpl::HasFinal; using CacheImpl::HasStart; using CacheImpl::PushArc; using CacheImpl::SetArcs; using CacheImpl::SetFinal; using CacheImpl::SetStart;
friend class ReplaceFstMatcher<Arc, StateTable, CacheStore>;
ReplaceFstImpl(const FstList<Arc> &fst_list, const ReplaceFstOptions<Arc, StateTable, CacheStore> &opts) : CacheImpl(opts), call_label_type_(opts.call_label_type), return_label_type_(opts.return_label_type), call_output_label_(opts.call_output_label), return_label_(opts.return_label), state_table_(opts.state_table ? opts.state_table : new StateTable(fst_list, opts.root)) { SetType("replace"); // If the label is epsilon, then all replace label options are equivalent,
// so we set the label types to NEITHER for simplicity.
if (call_output_label_ == 0) call_label_type_ = REPLACE_LABEL_NEITHER; if (return_label_ == 0) return_label_type_ = REPLACE_LABEL_NEITHER; if (!fst_list.empty()) { SetInputSymbols(fst_list[0].second->InputSymbols()); SetOutputSymbols(fst_list[0].second->OutputSymbols()); } fst_array_.push_back(nullptr); for (Label i = 0; i < fst_list.size(); ++i) { const auto label = fst_list[i].first; const auto *fst = fst_list[i].second; nonterminal_hash_[label] = fst_array_.size(); nonterminal_set_.insert(label); fst_array_.emplace_back(opts.take_ownership ? fst : fst->Copy()); if (i) { if (!CompatSymbols(InputSymbols(), fst->InputSymbols())) { FSTERROR() << "ReplaceFstImpl: Input symbols of FST " << i << " do not match input symbols of base FST (0th FST)"; SetProperties(kError, kError); } if (!CompatSymbols(OutputSymbols(), fst->OutputSymbols())) { FSTERROR() << "ReplaceFstImpl: Output symbols of FST " << i << " do not match output symbols of base FST (0th FST)"; SetProperties(kError, kError); } } } const auto nonterminal = nonterminal_hash_[opts.root]; if ((nonterminal == 0) && (fst_array_.size() > 1)) { FSTERROR() << "ReplaceFstImpl: No FST corresponding to root label " << opts.root << " in the input tuple vector"; SetProperties(kError, kError); } root_ = (nonterminal > 0) ? nonterminal : 1; bool all_non_empty_and_sorted = false; SetProperties(ReplaceFstProperties(opts.root, fst_list, call_label_type_, return_label_type_, call_output_label_, &all_non_empty_and_sorted)); // Enables optional caching as long as sorted and all non-empty.
always_cache_ = !all_non_empty_and_sorted; VLOG(2) << "ReplaceFstImpl::ReplaceFstImpl: always_cache = " << (always_cache_ ? "true" : "false"); }
ReplaceFstImpl(const ReplaceFstImpl &impl) : CacheImpl(impl), call_label_type_(impl.call_label_type_), return_label_type_(impl.return_label_type_), call_output_label_(impl.call_output_label_), return_label_(impl.return_label_), always_cache_(impl.always_cache_), state_table_(new StateTable(*(impl.state_table_))), nonterminal_set_(impl.nonterminal_set_), nonterminal_hash_(impl.nonterminal_hash_), root_(impl.root_) { SetType("replace"); SetProperties(impl.Properties(), kCopyProperties); SetInputSymbols(impl.InputSymbols()); SetOutputSymbols(impl.OutputSymbols()); fst_array_.reserve(impl.fst_array_.size()); fst_array_.emplace_back(nullptr); for (Label i = 1; i < impl.fst_array_.size(); ++i) { fst_array_.emplace_back(impl.fst_array_[i]->Copy(true)); } }
// Computes the dependency graph of the replace class and returns
// true if the dependencies are cyclic. Cyclic dependencies will result
// in an un-expandable FST.
bool CyclicDependencies() const { const ReplaceUtilOptions opts(root_); ReplaceUtil<Arc> replace_util(fst_array_, nonterminal_hash_, opts); return replace_util.CyclicDependencies(); }
StateId Start() { if (!HasStart()) { if (fst_array_.size() == 1) { SetStart(kNoStateId); return kNoStateId; } else { const auto fst_start = fst_array_[root_]->Start(); if (fst_start == kNoStateId) return kNoStateId; const auto prefix = GetPrefixId(StackPrefix()); const auto start = state_table_->FindState(StateTuple(prefix, root_, fst_start)); SetStart(start); return start; } } else { return CacheImpl::Start(); } }
Weight Final(StateId s) { if (HasFinal(s)) return CacheImpl::Final(s); const auto &tuple = state_table_->Tuple(s); auto weight = Weight::Zero(); if (tuple.prefix_id == 0) { const auto fst_state = tuple.fst_state; weight = fst_array_[tuple.fst_id]->Final(fst_state); } if (always_cache_ || HasArcs(s)) SetFinal(s, weight); return weight; }
size_t NumArcs(StateId s) { if (HasArcs(s)) { return CacheImpl::NumArcs(s); } else if (always_cache_) { // If always caching, expands and caches state.
Expand(s); return CacheImpl::NumArcs(s); } else { // Otherwise computes the number of arcs without expanding.
const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) return 0; auto num_arcs = fst_array_[tuple.fst_id]->NumArcs(tuple.fst_state); if (ComputeFinalArc(tuple, nullptr)) ++num_arcs; return num_arcs; } }
// Returns whether a given label is a non-terminal.
bool IsNonTerminal(Label label) const { if (label < *nonterminal_set_.begin() || label > *nonterminal_set_.rbegin()) { return false; } else { return nonterminal_hash_.count(label); } // TODO(allauzen): be smarter and take advantage of all_dense or
// all_negative. Also use this in ComputeArc. This would require changes to
// Replace so that recursing into an empty FST lead to a non co-accessible
// state instead of deleting the arc as done currently. The current use
// correct, since labels are sorted if all_non_empty is true.
}
size_t NumInputEpsilons(StateId s) { if (HasArcs(s)) { return CacheImpl::NumInputEpsilons(s); } else if (always_cache_ || !Properties(kILabelSorted)) { // If always caching or if the number of input epsilons is too expensive
// to compute without caching (i.e., not ilabel-sorted), then expands and
// caches state.
Expand(s); return CacheImpl::NumInputEpsilons(s); } else { // Otherwise, computes the number of input epsilons without caching.
const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) return 0; size_t num = 0; if (!EpsilonOnInput(call_label_type_)) { // If EpsilonOnInput(c) is false, all input epsilon arcs
// are also input epsilons arcs in the underlying machine.
num = fst_array_[tuple.fst_id]->NumInputEpsilons(tuple.fst_state); } else { // Otherwise, one need to consider that all non-terminal arcs
// in the underlying machine also become input epsilon arc.
ArcIterator<Fst<Arc>> aiter(*fst_array_[tuple.fst_id], tuple.fst_state); for (; !aiter.Done() && ((aiter.Value().ilabel == 0) || IsNonTerminal(aiter.Value().olabel)); aiter.Next()) { ++num; } } if (EpsilonOnInput(return_label_type_) && ComputeFinalArc(tuple, nullptr)) { ++num; } return num; } }
size_t NumOutputEpsilons(StateId s) { if (HasArcs(s)) { return CacheImpl::NumOutputEpsilons(s); } else if (always_cache_ || !Properties(kOLabelSorted)) { // If always caching or if the number of output epsilons is too expensive
// to compute without caching (i.e., not olabel-sorted), then expands and
// caches state.
Expand(s); return CacheImpl::NumOutputEpsilons(s); } else { // Otherwise, computes the number of output epsilons without caching.
const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) return 0; size_t num = 0; if (!EpsilonOnOutput(call_label_type_)) { // If EpsilonOnOutput(c) is false, all output epsilon arcs are also
// output epsilons arcs in the underlying machine.
num = fst_array_[tuple.fst_id]->NumOutputEpsilons(tuple.fst_state); } else { // Otherwise, one need to consider that all non-terminal arcs in the
// underlying machine also become output epsilon arc.
ArcIterator<Fst<Arc>> aiter(*fst_array_[tuple.fst_id], tuple.fst_state); for (; !aiter.Done() && ((aiter.Value().olabel == 0) || IsNonTerminal(aiter.Value().olabel)); aiter.Next()) { ++num; } } if (EpsilonOnOutput(return_label_type_) && ComputeFinalArc(tuple, nullptr)) { ++num; } return num; } }
uint64_t Properties() const override { return Properties(kFstProperties); }
// Sets error if found, and returns other FST impl properties.
uint64_t Properties(uint64_t mask) const override { if (mask & kError) { for (Label i = 1; i < fst_array_.size(); ++i) { if (fst_array_[i]->Properties(kError, false)) { SetProperties(kError, kError); } } } return FstImpl<Arc>::Properties(mask); }
// Returns the base arc iterator, and if arcs have not been computed yet,
// extends and recurses for new arcs.
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) { if (!HasArcs(s)) Expand(s); CacheImpl::InitArcIterator(s, data); // TODO(allauzen): Set behaviour of generic iterator.
// Warning: ArcIterator<ReplaceFst<A>>::InitCache() relies on current
// behaviour.
}
// Extends current state (walk arcs one level deep).
void Expand(StateId s) { const auto tuple = state_table_->Tuple(s); if (tuple.fst_state == kNoStateId) { // Local FST is empty.
SetArcs(s); return; } ArcIterator<Fst<Arc>> aiter(*fst_array_[tuple.fst_id], tuple.fst_state); Arc arc; // Creates a final arc when needed.
if (ComputeFinalArc(tuple, &arc)) PushArc(s, std::move(arc)); // Expands all arcs leaving the state.
for (; !aiter.Done(); aiter.Next()) { if (ComputeArc(tuple, aiter.Value(), &arc)) PushArc(s, std::move(arc)); } SetArcs(s); }
void Expand(StateId s, const StateTuple &tuple, const ArcIteratorData<Arc> &data) { if (tuple.fst_state == kNoStateId) { // Local FST is empty.
SetArcs(s); return; } ArcIterator<Fst<Arc>> aiter(data); Arc arc; // Creates a final arc when needed.
if (ComputeFinalArc(tuple, &arc)) AddArc(s, arc); // Expands all arcs leaving the state.
for (; !aiter.Done(); aiter.Next()) { if (ComputeArc(tuple, aiter.Value(), &arc)) AddArc(s, arc); } SetArcs(s); }
// If acpp is null, only returns true if a final arcp is required, but does
// not actually compute it.
bool ComputeFinalArc(const StateTuple &tuple, Arc *arcp, uint8_t flags = kArcValueFlags) { const auto fst_state = tuple.fst_state; if (fst_state == kNoStateId) return false; // If state is final, pops the stack.
if (fst_array_[tuple.fst_id]->Final(fst_state) != Weight::Zero() && tuple.prefix_id) { if (arcp) { arcp->ilabel = (EpsilonOnInput(return_label_type_)) ? 0 : return_label_; arcp->olabel = (EpsilonOnOutput(return_label_type_)) ? 0 : return_label_; if (flags & kArcNextStateValue) { const auto &stack = state_table_->GetStackPrefix(tuple.prefix_id); const auto prefix_id = PopPrefix(stack); const auto &top = stack.Top(); arcp->nextstate = state_table_->FindState( StateTuple(prefix_id, top.fst_id, top.nextstate)); } if (flags & kArcWeightValue) { arcp->weight = fst_array_[tuple.fst_id]->Final(fst_state); } } return true; } else { return false; } }
// Computes an arc in the FST corresponding to one in the underlying machine.
// Returns false if the underlying arc corresponds to no arc in the resulting
// FST.
bool ComputeArc(const StateTuple &tuple, const Arc &arc, Arc *arcp, uint8_t flags = kArcValueFlags) { if (!EpsilonOnInput(call_label_type_) && (flags == (flags & (kArcILabelValue | kArcWeightValue)))) { *arcp = arc; return true; } if (arc.olabel == 0 || arc.olabel < *nonterminal_set_.begin() || arc.olabel > *nonterminal_set_.rbegin()) { // Expands local FST.
const auto nextstate = flags & kArcNextStateValue ? state_table_->FindState( StateTuple(tuple.prefix_id, tuple.fst_id, arc.nextstate)) : kNoStateId; *arcp = Arc(arc.ilabel, arc.olabel, arc.weight, nextstate); } else { // Checks for non-terminal.
if (const auto it = nonterminal_hash_.find(arc.olabel); it != nonterminal_hash_.end()) { // Recurses into non-terminal.
const auto nonterminal = it->second; const auto nt_prefix = PushPrefix(state_table_->GetStackPrefix(tuple.prefix_id), tuple.fst_id, arc.nextstate); // If the start state is valid, replace; othewise, the arc is implicitly
// deleted.
const auto nt_start = fst_array_[nonterminal]->Start(); if (nt_start != kNoStateId) { const auto nt_nextstate = flags & kArcNextStateValue ? state_table_->FindState(StateTuple( nt_prefix, nonterminal, nt_start)) : kNoStateId; const auto ilabel = (EpsilonOnInput(call_label_type_)) ? 0 : arc.ilabel; const auto olabel = (EpsilonOnOutput(call_label_type_)) ? 0 : ((call_output_label_ == kNoLabel) ? arc.olabel : call_output_label_); *arcp = Arc(ilabel, olabel, arc.weight, nt_nextstate); } else { return false; } } else { const auto nextstate = flags & kArcNextStateValue ? state_table_->FindState( StateTuple(tuple.prefix_id, tuple.fst_id, arc.nextstate)) : kNoStateId; *arcp = Arc(arc.ilabel, arc.olabel, arc.weight, nextstate); } } return true; }
// Returns the arc iterator flags supported by this FST.
uint8_t ArcIteratorFlags() const { uint8_t flags = kArcValueFlags; if (!always_cache_) flags |= kArcNoCache; return flags; }
StateTable *GetStateTable() const { return state_table_.get(); }
const Fst<Arc> *GetFst(Label fst_id) const { return fst_array_[fst_id].get(); }
Label GetFstId(Label nonterminal) const { const auto it = nonterminal_hash_.find(nonterminal); if (it == nonterminal_hash_.end()) { FSTERROR() << "ReplaceFstImpl::GetFstId: Nonterminal not found: " << nonterminal; } return it->second; }
// Returns true if label type on call arc results in epsilon input label.
bool EpsilonOnCallInput() { return EpsilonOnInput(call_label_type_); }
private: // The unique index into stack prefix table.
PrefixId GetPrefixId(const StackPrefix &prefix) { return state_table_->FindPrefixId(prefix); }
// The prefix ID after a stack pop.
PrefixId PopPrefix(StackPrefix prefix) { prefix.Pop(); return GetPrefixId(prefix); }
// The prefix ID after a stack push.
PrefixId PushPrefix(StackPrefix prefix, Label fst_id, StateId nextstate) { prefix.Push(fst_id, nextstate); return GetPrefixId(prefix); }
// Runtime options
ReplaceLabelType call_label_type_; // How to label call arc.
ReplaceLabelType return_label_type_; // How to label return arc.
int64_t call_output_label_; // Specifies output label to put on call arc
int64_t return_label_; // Specifies label to put on return arc.
bool always_cache_; // Disable optional caching of arc iterator?
// State table.
std::unique_ptr<StateTable> state_table_;
// Replace components.
std::set<Label> nonterminal_set_; NonTerminalHash nonterminal_hash_; std::vector<std::unique_ptr<const Fst<Arc>>> fst_array_; Label root_; };
} // namespace internal
//
// ReplaceFst supports dynamic replacement of arcs in one FST with another FST.
// This replacement is recursive. ReplaceFst can be used to support a variety of
// delayed constructions such as recursive
// transition networks, union, or closure. It is constructed with an array of
// FST(s). One FST represents the root (or topology) machine. The root FST
// refers to other FSTs by recursively replacing arcs labeled as non-terminals
// with the matching non-terminal FST. Currently the ReplaceFst uses the output
// symbols of the arcs to determine whether the arc is a non-terminal arc or
// not. A non-terminal can be any label that is not a non-zero terminal label in
// the output alphabet.
//
// Note that the constructor uses a vector of pairs. These correspond to the
// tuple of non-terminal Label and corresponding FST. For example to implement
// the closure operation we need 2 FSTs. The first root FST is a single
// self-loop arc on the start state.
//
// The ReplaceFst class supports an optionally caching arc iterator.
//
// The ReplaceFst needs to be built such that it is known to be ilabel- or
// olabel-sorted (see usage below).
//
// Observe that Matcher<Fst<A>> will use the optionally caching arc iterator
// when available (the FST is ilabel-sorted and matching on the input, or the
// FST is olabel -orted and matching on the output). In order to obtain the
// most efficient behaviour, it is recommended to set call_label_type to
// REPLACE_LABEL_INPUT or REPLACE_LABEL_BOTH and return_label_type to
// REPLACE_LABEL_OUTPUT or REPLACE_LABEL_NEITHER. This means that the call arc
// does not have epsilon on the input side and the return arc has epsilon on the
// input side) and matching on the input side.
//
// This class attaches interface to implementation and handles reference
// counting, delegating most methods to ImplToFst.
template <class A, class T /* = DefaultReplaceStateTable<A> */, class CacheStore /* = DefaultCacheStore<A> */> class ReplaceFst : public ImplToFst<internal::ReplaceFstImpl<A, T, CacheStore>> { public: using Arc = A; using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
using StateTable = T; using Store = CacheStore; using State = typename CacheStore::State; using Impl = internal::ReplaceFstImpl<Arc, StateTable, CacheStore>; using CacheImpl = internal::CacheBaseImpl<State, CacheStore>;
using ImplToFst<Impl>::Properties;
friend class ArcIterator<ReplaceFst<Arc, StateTable, CacheStore>>; friend class StateIterator<ReplaceFst<Arc, StateTable, CacheStore>>; friend class ReplaceFstMatcher<Arc, StateTable, CacheStore>;
ReplaceFst(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_array, Label root) : ImplToFst<Impl>(std::make_shared<Impl>( fst_array, ReplaceFstOptions<Arc, StateTable, CacheStore>(root))) {}
ReplaceFst(const std::vector<std::pair<Label, const Fst<Arc> *>> &fst_array, const ReplaceFstOptions<Arc, StateTable, CacheStore> &opts) : ImplToFst<Impl>(std::make_shared<Impl>(fst_array, opts)) {}
// See Fst<>::Copy() for doc.
ReplaceFst(const ReplaceFst &fst, bool safe = false) : ImplToFst<Impl>(fst, safe) {}
// Get a copy of this ReplaceFst. See Fst<>::Copy() for further doc.
ReplaceFst *Copy(bool safe = false) const override { return new ReplaceFst(*this, safe); }
inline void InitStateIterator(StateIteratorData<Arc> *data) const override;
void InitArcIterator(StateId s, ArcIteratorData<Arc> *data) const override { GetMutableImpl()->InitArcIterator(s, data); }
MatcherBase<Arc> *InitMatcher(MatchType match_type) const override { if ((GetImpl()->ArcIteratorFlags() & kArcNoCache) && ((match_type == MATCH_INPUT && Properties(kILabelSorted, false)) || (match_type == MATCH_OUTPUT && Properties(kOLabelSorted, false)))) { return new ReplaceFstMatcher<Arc, StateTable, CacheStore>(this, match_type); } else { VLOG(2) << "Not using replace matcher"; return nullptr; } }
bool CyclicDependencies() const { return GetImpl()->CyclicDependencies(); }
const StateTable &GetStateTable() const { return *GetImpl()->GetStateTable(); }
const Fst<Arc> &GetFst(Label nonterminal) const { return *GetImpl()->GetFst(GetImpl()->GetFstId(nonterminal)); }
private: using ImplToFst<Impl>::GetImpl; using ImplToFst<Impl>::GetMutableImpl;
ReplaceFst &operator=(const ReplaceFst &) = delete; };
// Specialization for ReplaceFst.
template <class Arc, class StateTable, class CacheStore> class StateIterator<ReplaceFst<Arc, StateTable, CacheStore>> : public CacheStateIterator<ReplaceFst<Arc, StateTable, CacheStore>> { public: explicit StateIterator(const ReplaceFst<Arc, StateTable, CacheStore> &fst) : CacheStateIterator<ReplaceFst<Arc, StateTable, CacheStore>>( fst, fst.GetMutableImpl()) {} };
// Specialization for ReplaceFst, implementing optional caching. It is be used
// as follows:
//
// ReplaceFst<A> replace;
// ArcIterator<ReplaceFst<A>> aiter(replace, s);
// // Note: ArcIterator< Fst<A>> is always a caching arc iterator.
// aiter.SetFlags(kArcNoCache, kArcNoCache);
// // Uses the arc iterator, no arc will be cached, no state will be expanded.
// // Arc flags can be used to decide which component of the arc need to be
// computed.
// aiter.SetFlags(kArcILabelValue, kArcValueFlags);
// // Wants the ilabel for this arc.
// aiter.Value(); // Does not compute the destination state.
// aiter.Next();
// aiter.SetFlags(kArcNextStateValue, kArcNextStateValue);
// // Wants the ilabel and next state for this arc.
// aiter.Value(); // Does compute the destination state and inserts it
// // in the replace state table.
// // No additional arcs have been cached at this point.
template <class Arc, class StateTable, class CacheStore> class ArcIterator<ReplaceFst<Arc, StateTable, CacheStore>> { public: using StateId = typename Arc::StateId;
using StateTuple = typename StateTable::StateTuple;
ArcIterator(const ReplaceFst<Arc, StateTable, CacheStore> &fst, StateId s) : fst_(fst), s_(s), pos_(0), offset_(0), flags_(kArcValueFlags), arcs_(nullptr), data_flags_(0), final_flags_(0) { cache_data_.ref_count = nullptr; local_data_.ref_count = nullptr; // If FST does not support optional caching, forces caching.
if (!(fst_.GetImpl()->ArcIteratorFlags() & kArcNoCache) && !(fst_.GetImpl()->HasArcs(s_))) { fst_.GetMutableImpl()->Expand(s_); } // If state is already cached, use cached arcs array.
if (fst_.GetImpl()->HasArcs(s_)) { (fst_.GetImpl()) ->internal::template CacheBaseImpl< typename CacheStore::State, CacheStore>::InitArcIterator(s_, &cache_data_); num_arcs_ = cache_data_.narcs; arcs_ = cache_data_.arcs; // arcs_ is a pointer to the cached arcs.
data_flags_ = kArcValueFlags; // All the arc member values are valid.
} else { // Otherwise delay decision until Value() is called.
tuple_ = fst_.GetImpl()->GetStateTable()->Tuple(s_); if (tuple_.fst_state == kNoStateId) { num_arcs_ = 0; } else { // The decision to cache or not to cache has been defered until Value()
// or
// SetFlags() is called. However, the arc iterator is set up now to be
// ready for non-caching in order to keep the Value() method simple and
// efficient.
const auto *rfst = fst_.GetImpl()->GetFst(tuple_.fst_id); rfst->InitArcIterator(tuple_.fst_state, &local_data_); // arcs_ is a pointer to the arcs in the underlying machine.
arcs_ = local_data_.arcs; // Computes the final arc (but not its destination state) if a final arc
// is required.
bool has_final_arc = fst_.GetMutableImpl()->ComputeFinalArc( tuple_, &final_arc_, kArcValueFlags & ~kArcNextStateValue); // Sets the arc value flags that hold for final_arc_.
final_flags_ = kArcValueFlags & ~kArcNextStateValue; // Computes the number of arcs.
num_arcs_ = local_data_.narcs; if (has_final_arc) ++num_arcs_; // Sets the offset between the underlying arc positions and the
// positions
// in the arc iterator.
offset_ = num_arcs_ - local_data_.narcs; // Defers the decision to cache or not until Value() or SetFlags() is
// called.
data_flags_ = 0; } } }
~ArcIterator() { if (cache_data_.ref_count) --(*cache_data_.ref_count); if (local_data_.ref_count) --(*local_data_.ref_count); }
void ExpandAndCache() const { // TODO(allauzen): revisit this.
// fst_.GetImpl()->Expand(s_, tuple_, local_data_);
// (fst_.GetImpl())->CacheImpl<A>*>::InitArcIterator(s_,
// &cache_data_);
//
fst_.InitArcIterator(s_, &cache_data_); // Expand and cache state.
arcs_ = cache_data_.arcs; // arcs_ is a pointer to the cached arcs.
data_flags_ = kArcValueFlags; // All the arc member values are valid.
offset_ = 0; // No offset.
}
void Init() { if (flags_ & kArcNoCache) { // If caching is disabled
// arcs_ is a pointer to the arcs in the underlying machine.
arcs_ = local_data_.arcs; // Sets the arcs value flags that hold for arcs_.
data_flags_ = kArcWeightValue; if (!fst_.GetMutableImpl()->EpsilonOnCallInput()) { data_flags_ |= kArcILabelValue; } // Sets the offset between the underlying arc positions and the positions
// in the arc iterator.
offset_ = num_arcs_ - local_data_.narcs; } else { ExpandAndCache(); } }
bool Done() const { return pos_ >= num_arcs_; }
const Arc &Value() const { // If data_flags_ is 0, non-caching was not requested.
if (!data_flags_) { // TODO(allauzen): Revisit this.
if (flags_ & kArcNoCache) { // Should never happen.
FSTERROR() << "ReplaceFst: Inconsistent arc iterator flags"; } ExpandAndCache(); } if (pos_ - offset_ >= 0) { // The requested arc is not the final arc.
const auto &arc = arcs_[pos_ - offset_]; if ((data_flags_ & flags_) == (flags_ & kArcValueFlags)) { // If the value flags match the recquired value flags then returns the
// arc.
return arc; } else { // Otherwise, compute the corresponding arc on-the-fly.
fst_.GetMutableImpl()->ComputeArc(tuple_, arc, &arc_, flags_ & kArcValueFlags); return arc_; } } else { // The requested arc is the final arc.
if ((final_flags_ & flags_) != (flags_ & kArcValueFlags)) { // If the arc value flags that hold for the final arc do not match the
// requested value flags, then
// final_arc_ needs to be updated.
fst_.GetMutableImpl()->ComputeFinalArc(tuple_, &final_arc_, flags_ & kArcValueFlags); final_flags_ = flags_ & kArcValueFlags; } return final_arc_; } }
void Next() { ++pos_; }
size_t Position() const { return pos_; }
void Reset() { pos_ = 0; }
void Seek(size_t pos) { pos_ = pos; }
uint8_t Flags() const { return flags_; }
void SetFlags(uint8_t flags, uint8_t mask) { // Updates the flags taking into account what flags are supported
// by the FST.
flags_ &= ~mask; flags_ |= (flags & fst_.GetImpl()->ArcIteratorFlags()); // If non-caching is not requested (and caching has not already been
// performed), then flush data_flags_ to request caching during the next
// call to Value().
if (!(flags_ & kArcNoCache) && data_flags_ != kArcValueFlags) { if (!fst_.GetImpl()->HasArcs(s_)) data_flags_ = 0; } // If data_flags_ has been flushed but non-caching is requested before
// calling Value(), then set up the iterator for non-caching.
if ((flags & kArcNoCache) && (!data_flags_)) Init(); }
private: const ReplaceFst<Arc, StateTable, CacheStore> &fst_; // Reference to the FST.
StateId s_; // State in the FST.
mutable StateTuple tuple_; // Tuple corresponding to state_.
ssize_t pos_; // Current position.
mutable ssize_t offset_; // Offset between position in iterator and in arcs_.
ssize_t num_arcs_; // Number of arcs at state_.
uint8_t flags_; // Behavorial flags for the arc iterator
mutable Arc arc_; // Memory to temporarily store computed arcs.
mutable ArcIteratorData<Arc> cache_data_; // Arc iterator data in cache.
mutable ArcIteratorData<Arc> local_data_; // Arc iterator data in local FST.
mutable const Arc *arcs_; // Array of arcs.
mutable uint8_t data_flags_; // Arc value flags valid for data in arcs_.
mutable Arc final_arc_; // Final arc (when required).
mutable uint8_t final_flags_; // Arc value flags valid for final_arc_.
ArcIterator(const ArcIterator &) = delete; ArcIterator &operator=(const ArcIterator &) = delete; };
template <class Arc, class StateTable, class CacheStore> class ReplaceFstMatcher : public MatcherBase<Arc> { public: using Label = typename Arc::Label; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
using FST = ReplaceFst<Arc, StateTable, CacheStore>; using LocalMatcher = MultiEpsMatcher<Matcher<Fst<Arc>>>;
using StateTuple = typename StateTable::StateTuple;
// This makes a copy of the FST.
ReplaceFstMatcher(const ReplaceFst<Arc, StateTable, CacheStore> &fst, MatchType match_type) : owned_fst_(fst.Copy()), fst_(*owned_fst_), impl_(fst_.GetMutableImpl()), s_(fst::kNoStateId), match_type_(match_type), current_loop_(false), final_arc_(false), loop_(kNoLabel, 0, Weight::One(), kNoStateId) { if (match_type_ == fst::MATCH_OUTPUT) { std::swap(loop_.ilabel, loop_.olabel); } InitMatchers(); }
// This doesn't copy the FST.
ReplaceFstMatcher(const ReplaceFst<Arc, StateTable, CacheStore> *fst, MatchType match_type) : fst_(*fst), impl_(fst_.GetMutableImpl()), s_(fst::kNoStateId), match_type_(match_type), current_loop_(false), final_arc_(false), loop_(kNoLabel, 0, Weight::One(), kNoStateId) { if (match_type_ == fst::MATCH_OUTPUT) { std::swap(loop_.ilabel, loop_.olabel); } InitMatchers(); }
// This makes a copy of the FST.
ReplaceFstMatcher(const ReplaceFstMatcher &matcher, bool safe = false) : owned_fst_(matcher.fst_.Copy(safe)), fst_(*owned_fst_), impl_(fst_.GetMutableImpl()), s_(fst::kNoStateId), match_type_(matcher.match_type_), current_loop_(false), final_arc_(false), loop_(fst::kNoLabel, 0, Weight::One(), fst::kNoStateId) { if (match_type_ == fst::MATCH_OUTPUT) { std::swap(loop_.ilabel, loop_.olabel); } InitMatchers(); }
// Creates a local matcher for each component FST in the RTN. LocalMatcher is
// a multi-epsilon wrapper matcher. MultiEpsilonMatcher is used to match each
// non-terminal arc, since these non-terminal
// turn into epsilons on recursion.
void InitMatchers() { const auto &fst_array = impl_->fst_array_; matcher_.resize(fst_array.size()); for (Label i = 0; i < fst_array.size(); ++i) { if (fst_array[i]) { matcher_[i] = std::make_unique<LocalMatcher>(*fst_array[i], match_type_, kMultiEpsList); auto it = impl_->nonterminal_set_.begin(); for (; it != impl_->nonterminal_set_.end(); ++it) { matcher_[i]->AddMultiEpsLabel(*it); } } } }
ReplaceFstMatcher *Copy(bool safe = false) const override { return new ReplaceFstMatcher(*this, safe); }
MatchType Type(bool test) const override { if (match_type_ == MATCH_NONE) return match_type_; const auto true_prop = match_type_ == MATCH_INPUT ? kILabelSorted : kOLabelSorted; const auto false_prop = match_type_ == MATCH_INPUT ? kNotILabelSorted : kNotOLabelSorted; const auto props = fst_.Properties(true_prop | false_prop, test); if (props & true_prop) { return match_type_; } else if (props & false_prop) { return MATCH_NONE; } else { return MATCH_UNKNOWN; } }
const Fst<Arc> &GetFst() const override { return fst_; }
uint64_t Properties(uint64_t props) const override { return props; }
// Sets the state from which our matching happens.
void SetState(StateId s) final { if (s_ == s) return; s_ = s; tuple_ = impl_->GetStateTable()->Tuple(s_); if (tuple_.fst_state == kNoStateId) { done_ = true; return; } // Gets current matcher, used for non-epsilon matching.
current_matcher_ = matcher_[tuple_.fst_id].get(); current_matcher_->SetState(tuple_.fst_state); loop_.nextstate = s_; final_arc_ = false; }
// Searches for label from previous set state. If label == 0, first
// hallucinate an epsilon loop; otherwise use the underlying matcher to
// search for the label or epsilons. Note since the ReplaceFst recursion
// on non-terminal arcs causes epsilon transitions to be created we use
// MultiEpsilonMatcher to search for possible matches of non-terminals. If the
// component FST
// reaches a final state we also need to add the exiting final arc.
bool Find(Label label) final { bool found = false; label_ = label; if (label_ == 0 || label_ == kNoLabel) { // Computes loop directly, avoiding Replace::ComputeArc.
if (label_ == 0) { current_loop_ = true; found = true; } // Searches for matching multi-epsilons.
final_arc_ = impl_->ComputeFinalArc(tuple_, nullptr); found = current_matcher_->Find(kNoLabel) || final_arc_ || found; } else { // Searches on a sub machine directly using sub machine matcher.
found = current_matcher_->Find(label_); } return found; }
bool Done() const final { return !current_loop_ && !final_arc_ && current_matcher_->Done(); }
const Arc &Value() const final { if (current_loop_) return loop_; if (final_arc_) { impl_->ComputeFinalArc(tuple_, &arc_); return arc_; } const auto &component_arc = current_matcher_->Value(); impl_->ComputeArc(tuple_, component_arc, &arc_); return arc_; }
void Next() final { if (current_loop_) { current_loop_ = false; return; } if (final_arc_) { final_arc_ = false; return; } current_matcher_->Next(); }
ssize_t Priority(StateId s) final { return fst_.NumArcs(s); }
private: std::unique_ptr<const ReplaceFst<Arc, StateTable, CacheStore>> owned_fst_; const ReplaceFst<Arc, StateTable, CacheStore> &fst_; internal::ReplaceFstImpl<Arc, StateTable, CacheStore> *impl_; LocalMatcher *current_matcher_; std::vector<std::unique_ptr<LocalMatcher>> matcher_; StateId s_; // Current state.
Label label_; // Current label.
MatchType match_type_; // Supplied by caller.
mutable bool done_; mutable bool current_loop_; // Current arc is the implicit loop.
mutable bool final_arc_; // Current arc for exiting recursion.
mutable StateTuple tuple_; // Tuple corresponding to state_.
mutable Arc arc_; Arc loop_;
ReplaceFstMatcher &operator=(const ReplaceFstMatcher &) = delete; };
template <class Arc, class StateTable, class CacheStore> inline void ReplaceFst<Arc, StateTable, CacheStore>::InitStateIterator( StateIteratorData<Arc> *data) const { data->base = std::make_unique<StateIterator<ReplaceFst<Arc, StateTable, CacheStore>>>( *this); }
using StdReplaceFst = ReplaceFst<StdArc>;
// Recursively replaces arcs in the root FSTs with other FSTs.
// This version writes the result of replacement to an output MutableFst.
//
// Replace supports replacement of arcs in one Fst with another FST. This
// replacement is recursive. Replace takes an array of FST(s). One FST
// represents the root (or topology) machine. The root FST refers to other FSTs
// by recursively replacing arcs labeled as non-terminals with the matching
// non-terminal FST. Currently Replace uses the output symbols of the arcs to
// determine whether the arc is a non-terminal arc or not. A non-terminal can be
// any label that is not a non-zero terminal label in the output alphabet.
//
// Note that input argument is a vector of pairs. These correspond to the tuple
// of non-terminal Label and corresponding FST.
template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, ReplaceFstOptions<Arc> opts = ReplaceFstOptions<Arc>()) { opts.gc = true; opts.gc_limit = 0; // Caches only the last state for fastest copy.
*ofst = ReplaceFst<Arc>(ifst_array, opts); }
template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, const ReplaceUtilOptions &opts) { Replace(ifst_array, ofst, ReplaceFstOptions<Arc>(opts)); }
// For backwards compatibility.
template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, typename Arc::Label root, bool epsilon_on_replace) { Replace(ifst_array, ofst, ReplaceFstOptions<Arc>(root, epsilon_on_replace)); }
template <class Arc> void Replace(const std::vector<std::pair<typename Arc::Label, const Fst<Arc> *>> &ifst_array, MutableFst<Arc> *ofst, typename Arc::Label root) { Replace(ifst_array, ofst, ReplaceFstOptions<Arc>(root)); }
} // namespace fst
#endif // FST_REPLACE_H_
|