You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

361 lines
12 KiB

  1. // Copyright (c) 2017 Personal (Binbin Zhang)
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #ifndef FRONTEND_FBANK_H_
  15. #define FRONTEND_FBANK_H_
  16. #include <cstring>
  17. #include <limits>
  18. #include <random>
  19. #include <utility>
  20. #include <vector>
  21. #include "frontend/fft.h"
  22. #ifndef FST_LOG_H_
  23. #include "fst/log.h"
  24. #endif
  25. namespace wenet {
  26. // This code is based on kaldi Fbank implementation, please see
  27. // https://github.com/kaldi-asr/kaldi/blob/master/src/feat/feature-fbank.cc
  28. static const int kS16AbsMax = 1 << 15;
  29. enum class WindowType {
  30. kPovey = 0,
  31. kHanning,
  32. };
  33. enum class MelType {
  34. kHTK = 0,
  35. kSlaney,
  36. };
  37. enum class NormalizationType {
  38. kKaldi = 0,
  39. kWhisper,
  40. };
  41. enum class LogBase {
  42. kBaseE = 0,
  43. kBase10,
  44. };
  45. class Fbank {
  46. public:
  47. Fbank(int num_bins, int sample_rate, int frame_length, int frame_shift,
  48. float low_freq = 20, bool pre_emphasis = true,
  49. bool scale_input_to_unit = false,
  50. float log_floor = std::numeric_limits<float>::epsilon(),
  51. LogBase log_base = LogBase::kBaseE,
  52. WindowType window_type = WindowType::kPovey,
  53. MelType mel_type = MelType::kHTK,
  54. NormalizationType norm_type = NormalizationType::kKaldi)
  55. : num_bins_(num_bins),
  56. sample_rate_(sample_rate),
  57. frame_length_(frame_length),
  58. frame_shift_(frame_shift),
  59. use_log_(true),
  60. remove_dc_offset_(true),
  61. generator_(0),
  62. distribution_(0, 1.0),
  63. dither_(0.0),
  64. low_freq_(low_freq),
  65. high_freq_(sample_rate / 2),
  66. pre_emphasis_(pre_emphasis),
  67. scale_input_to_unit_(scale_input_to_unit),
  68. log_floor_(log_floor),
  69. log_base_(log_base),
  70. norm_type_(norm_type) {
  71. fft_points_ = UpperPowerOfTwo(frame_length_);
  72. // generate bit reversal table and trigonometric function table
  73. const int fft_points_4 = fft_points_ / 4;
  74. bitrev_.resize(fft_points_);
  75. sintbl_.resize(fft_points_ + fft_points_4);
  76. make_sintbl(fft_points_, sintbl_.data());
  77. make_bitrev(fft_points_, bitrev_.data());
  78. InitMelFilters(mel_type);
  79. InitWindow(window_type);
  80. }
  81. void InitMelFilters(MelType mel_type) {
  82. int num_fft_bins = fft_points_ / 2;
  83. float fft_bin_width = static_cast<float>(sample_rate_) / fft_points_;
  84. float mel_low_freq = MelScale(low_freq_, mel_type);
  85. float mel_high_freq = MelScale(high_freq_, mel_type);
  86. float mel_freq_delta = (mel_high_freq - mel_low_freq) / (num_bins_ + 1);
  87. bins_.resize(num_bins_);
  88. center_freqs_.resize(num_bins_);
  89. for (int bin = 0; bin < num_bins_; ++bin) {
  90. float left_mel = mel_low_freq + bin * mel_freq_delta,
  91. center_mel = mel_low_freq + (bin + 1) * mel_freq_delta,
  92. right_mel = mel_low_freq + (bin + 2) * mel_freq_delta;
  93. center_freqs_[bin] = InverseMelScale(center_mel, mel_type);
  94. std::vector<float> this_bin(num_fft_bins);
  95. int first_index = -1, last_index = -1;
  96. for (int i = 0; i < num_fft_bins; ++i) {
  97. float freq = (fft_bin_width * i); // Center frequency of this fft
  98. // bin.
  99. float mel = MelScale(freq, mel_type);
  100. if (mel > left_mel && mel < right_mel) {
  101. float weight;
  102. if (mel_type == MelType::kHTK) {
  103. if (mel <= center_mel)
  104. weight = (mel - left_mel) / (center_mel - left_mel);
  105. else if (mel > center_mel)
  106. weight = (right_mel - mel) / (right_mel - center_mel);
  107. } else if (mel_type == MelType::kSlaney) {
  108. if (mel <= center_mel) {
  109. weight = (InverseMelScale(mel, mel_type) -
  110. InverseMelScale(left_mel, mel_type)) /
  111. (InverseMelScale(center_mel, mel_type) -
  112. InverseMelScale(left_mel, mel_type));
  113. weight *= 2.0 / (InverseMelScale(right_mel, mel_type) -
  114. InverseMelScale(left_mel, mel_type));
  115. } else if (mel > center_mel) {
  116. weight = (InverseMelScale(right_mel, mel_type) -
  117. InverseMelScale(mel, mel_type)) /
  118. (InverseMelScale(right_mel, mel_type) -
  119. InverseMelScale(center_mel, mel_type));
  120. weight *= 2.0 / (InverseMelScale(right_mel, mel_type) -
  121. InverseMelScale(left_mel, mel_type));
  122. }
  123. }
  124. this_bin[i] = weight;
  125. if (first_index == -1) first_index = i;
  126. last_index = i;
  127. }
  128. }
  129. CHECK(first_index != -1 && last_index >= first_index);
  130. bins_[bin].first = first_index;
  131. int size = last_index + 1 - first_index;
  132. bins_[bin].second.resize(size);
  133. for (int i = 0; i < size; ++i) {
  134. bins_[bin].second[i] = this_bin[first_index + i];
  135. }
  136. }
  137. }
  138. void InitWindow(WindowType window_type) {
  139. window_.resize(frame_length_);
  140. if (window_type == WindowType::kPovey) {
  141. // povey window
  142. double a = M_2PI / (frame_length_ - 1);
  143. for (int i = 0; i < frame_length_; ++i)
  144. window_[i] = pow(0.5 - 0.5 * cos(a * i), 0.85);
  145. } else if (window_type == WindowType::kHanning) {
  146. // periodic hanning window
  147. double a = M_2PI / (frame_length_);
  148. for (int i = 0; i < frame_length_; ++i)
  149. window_[i] = 0.5 * (1.0 - cos(i * a));
  150. }
  151. }
  152. void set_use_log(bool use_log) { use_log_ = use_log; }
  153. void set_remove_dc_offset(bool remove_dc_offset) {
  154. remove_dc_offset_ = remove_dc_offset;
  155. }
  156. void set_dither(float dither) { dither_ = dither; }
  157. int num_bins() const { return num_bins_; }
  158. static inline float InverseMelScale(float mel_freq,
  159. MelType mel_type = MelType::kHTK) {
  160. if (mel_type == MelType::kHTK) {
  161. return 700.0f * (expf(mel_freq / 1127.0f) - 1.0f);
  162. } else if (mel_type == MelType::kSlaney) {
  163. float f_min = 0.0;
  164. float f_sp = 200.0f / 3.0f;
  165. float min_log_hz = 1000.0;
  166. float freq = f_min + f_sp * mel_freq;
  167. float min_log_mel = (min_log_hz - f_min) / f_sp;
  168. float logstep = logf(6.4) / 27.0f;
  169. if (mel_freq >= min_log_mel) {
  170. return min_log_hz * expf(logstep * (mel_freq - min_log_mel));
  171. } else {
  172. return freq;
  173. }
  174. } else {
  175. throw std::invalid_argument("Unsupported mel type!");
  176. }
  177. }
  178. static inline float MelScale(float freq, MelType mel_type = MelType::kHTK) {
  179. if (mel_type == MelType::kHTK) {
  180. return 1127.0f * logf(1.0f + freq / 700.0f);
  181. } else if (mel_type == MelType::kSlaney) {
  182. float f_min = 0.0;
  183. float f_sp = 200.0f / 3.0f;
  184. float min_log_hz = 1000.0;
  185. float mel = (freq - f_min) / f_sp;
  186. float min_log_mel = (min_log_hz - f_min) / f_sp;
  187. float logstep = logf(6.4) / 27.0f;
  188. if (freq >= min_log_hz) {
  189. return min_log_mel + logf(freq / min_log_hz) / logstep;
  190. } else {
  191. return mel;
  192. }
  193. } else {
  194. throw std::invalid_argument("Unsupported mel type!");
  195. }
  196. }
  197. static int UpperPowerOfTwo(int n) {
  198. return static_cast<int>(pow(2, ceil(log(n) / log(2))));
  199. }
  200. // pre emphasis
  201. void PreEmphasis(float coeff, std::vector<float>* data) const {
  202. if (coeff == 0.0) return;
  203. for (int i = data->size() - 1; i > 0; i--)
  204. (*data)[i] -= coeff * (*data)[i - 1];
  205. (*data)[0] -= coeff * (*data)[0];
  206. }
  207. // Apply window on data in place
  208. void ApplyWindow(std::vector<float>* data) const {
  209. CHECK_GE(data->size(), window_.size());
  210. for (size_t i = 0; i < window_.size(); ++i) {
  211. (*data)[i] *= window_[i];
  212. }
  213. }
  214. void WhisperNorm(std::vector<std::vector<float>>* feat,
  215. float max_mel_engery) {
  216. int num_frames = feat->size();
  217. for (int i = 0; i < num_frames; ++i) {
  218. for (int j = 0; j < num_bins_; ++j) {
  219. float energy = (*feat)[i][j];
  220. if (energy < max_mel_engery - 8) energy = max_mel_engery - 8;
  221. energy = (energy + 4.0) / 4.0;
  222. (*feat)[i][j] = energy;
  223. }
  224. }
  225. }
  226. // Compute fbank feat, return num frames
  227. int Compute(const std::vector<float>& wave,
  228. std::vector<std::vector<float>>* feat) {
  229. int num_samples = wave.size();
  230. if (num_samples < frame_length_) return 0;
  231. int num_frames = 1 + ((num_samples - frame_length_) / frame_shift_);
  232. feat->resize(num_frames);
  233. std::vector<float> fft_real(fft_points_, 0), fft_img(fft_points_, 0);
  234. std::vector<float> power(fft_points_ / 2);
  235. float max_mel_engery = std::numeric_limits<float>::min();
  236. for (int i = 0; i < num_frames; ++i) {
  237. std::vector<float> data(wave.data() + i * frame_shift_,
  238. wave.data() + i * frame_shift_ + frame_length_);
  239. if (scale_input_to_unit_) {
  240. for (int j = 0; j < frame_length_; ++j) {
  241. data[j] = data[j] / kS16AbsMax;
  242. }
  243. }
  244. // optional add noise
  245. if (dither_ != 0.0) {
  246. for (size_t j = 0; j < data.size(); ++j)
  247. data[j] += dither_ * distribution_(generator_);
  248. }
  249. // optinal remove dc offset
  250. if (remove_dc_offset_) {
  251. float mean = 0.0;
  252. for (size_t j = 0; j < data.size(); ++j) mean += data[j];
  253. mean /= data.size();
  254. for (size_t j = 0; j < data.size(); ++j) data[j] -= mean;
  255. }
  256. if (pre_emphasis_) {
  257. PreEmphasis(0.97, &data);
  258. }
  259. ApplyWindow(&data);
  260. // copy data to fft_real
  261. memset(fft_img.data(), 0, sizeof(float) * fft_points_);
  262. memset(fft_real.data() + frame_length_, 0,
  263. sizeof(float) * (fft_points_ - frame_length_));
  264. memcpy(fft_real.data(), data.data(), sizeof(float) * frame_length_);
  265. fft(bitrev_.data(), sintbl_.data(), fft_real.data(), fft_img.data(),
  266. fft_points_);
  267. // power
  268. for (int j = 0; j < fft_points_ / 2; ++j) {
  269. power[j] = fft_real[j] * fft_real[j] + fft_img[j] * fft_img[j];
  270. }
  271. (*feat)[i].resize(num_bins_);
  272. // cepstral coefficients, triangle filter array
  273. for (int j = 0; j < num_bins_; ++j) {
  274. float mel_energy = 0.0;
  275. int s = bins_[j].first;
  276. for (size_t k = 0; k < bins_[j].second.size(); ++k) {
  277. mel_energy += bins_[j].second[k] * power[s + k];
  278. }
  279. // optional use log
  280. if (use_log_) {
  281. if (mel_energy < log_floor_) mel_energy = log_floor_;
  282. if (log_base_ == LogBase::kBaseE)
  283. mel_energy = logf(mel_energy);
  284. else if (log_base_ == LogBase::kBase10)
  285. mel_energy = log10(mel_energy);
  286. }
  287. if (max_mel_engery < mel_energy) max_mel_engery = mel_energy;
  288. (*feat)[i][j] = mel_energy;
  289. }
  290. }
  291. if (norm_type_ == NormalizationType::kWhisper)
  292. WhisperNorm(feat, max_mel_engery);
  293. return num_frames;
  294. }
  295. private:
  296. int num_bins_;
  297. int sample_rate_;
  298. int frame_length_, frame_shift_;
  299. int fft_points_;
  300. bool use_log_;
  301. bool remove_dc_offset_;
  302. bool pre_emphasis_;
  303. bool scale_input_to_unit_;
  304. float low_freq_;
  305. float log_floor_;
  306. float high_freq_;
  307. LogBase log_base_;
  308. NormalizationType norm_type_;
  309. std::vector<float> center_freqs_;
  310. std::vector<std::pair<int, std::vector<float>>> bins_;
  311. std::vector<float> window_;
  312. std::default_random_engine generator_;
  313. std::normal_distribution<float> distribution_;
  314. float dither_;
  315. // bit reversal table
  316. std::vector<int> bitrev_;
  317. // trigonometric function table
  318. std::vector<float> sintbl_;
  319. };
  320. } // namespace wenet
  321. #endif // FRONTEND_FBANK_H_