|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Cartesian power weight semiring operation definitions, using
// SparseTupleWeight as underlying representation.
#ifndef FST_SPARSE_POWER_WEIGHT_H_
#define FST_SPARSE_POWER_WEIGHT_H_
#include <climits>
#include <cstddef>
#include <cstdint>
#include <random>
#include <string>
#include <fst/sparse-tuple-weight.h>
#include <fst/weight.h>
namespace fst {
// Sparse cartesian power semiring: W ^ n
//
// Forms:
//
// - a left semimodule when W is a left semiring,
// - a right semimodule when W is a right semiring,
// - a bisemimodule when W is a semiring,
// the free semimodule of rank n over W
//
// The Times operation is overloaded to provide the left and right scalar
// products.
//
// K is the key value type. kNoKey (-1) is reserved for internal use
template <class W, class K = int> class SparsePowerWeight : public SparseTupleWeight<W, K> { public: using Base = SparseTupleWeight<W, K>; using ReverseWeight = SparsePowerWeight<typename W::ReverseWeight, K>;
SparsePowerWeight() = default;
explicit SparsePowerWeight(const Base &weight) : Base(weight) {}
template <class Iterator> SparsePowerWeight(Iterator begin, Iterator end) : Base(begin, end) {}
// Initialize component `key` to `weight`, with `default_weight` for all
// other components.
SparsePowerWeight(const K &key, const W &weight, const W &default_weight = W::Zero()) : Base(key, weight, default_weight) {}
static const SparsePowerWeight &Zero() { static const SparsePowerWeight zero(Base::Zero()); return zero; }
static const SparsePowerWeight &One() { static const SparsePowerWeight one(Base::One()); return one; }
static const SparsePowerWeight &NoWeight() { static const SparsePowerWeight no_weight(Base::NoWeight()); return no_weight; }
// Overide this: Overwrite the Type method to reflect the key type if using
// a non-default key type.
static const std::string &Type() { static const std::string *const type = [] { std::string type = W::Type() + "_^n"; if (sizeof(K) != sizeof(uint32_t)) { type += "_" + std::to_string(CHAR_BIT * sizeof(K)); } return new std::string(type); }(); return *type; }
static constexpr uint64_t Properties() { return W::Properties() & (kLeftSemiring | kRightSemiring | kCommutative | kIdempotent); }
SparsePowerWeight Quantize(float delta = kDelta) const { return SparsePowerWeight(Base::Quantize(delta)); }
ReverseWeight Reverse() const { return ReverseWeight(Base::Reverse()); } };
template <class W, class K, class M> inline SparsePowerWeight<W, K> SparsePowerWeightMap( const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2, const M &operator_mapper) { SparsePowerWeight<W, K> result; SparseTupleWeightMap(&result, w1, w2, operator_mapper); return result; }
// Semimodule plus operation.
template <class W, class K> inline SparsePowerWeight<W, K> Plus(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) { return Plus(v1, v2); }); }
// Semimodule minus operation.
template <class W, class K> inline SparsePowerWeight<W, K> Minus(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) { return Minus(v1, v2); }); }
// Semimodule times operation.
template <class W, class K> inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) { return Times(v1, v2); }); }
// Semimodule divide operation.
template <class W, class K> inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2, DivideType type = DIVIDE_ANY) { return SparsePowerWeightMap(w1, w2, [type](const K &k, const W &v1, const W &v2) { return Divide(v1, v2, type); }); }
// Semimodule dot product operation.
template <class W, class K> inline const W &DotProduct(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2) { const SparsePowerWeight<W, K> product = Times(w1, w2); W result(W::Zero()); for (SparseTupleWeightIterator<W, K> it(product); !it.Done(); it.Next()) { result = Plus(result, it.Value().second); } return result; }
template <class W, class K> inline bool ApproxEqual(const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2, float delta = kDelta) { auto result = SparsePowerWeightMap( w1, w2, [delta](const K &k, const W &v1, const W &v2) { return ApproxEqual(v1, v2, delta) ? W::One() : W::Zero(); }); return result == SparsePowerWeight<W, K>::One(); }
template <class W, class K> inline SparsePowerWeight<W, K> Times(const W &k, const SparsePowerWeight<W, K> &w2) { const SparseTupleWeight<W, K> t2(k); const SparsePowerWeight<W, K> w1(t2); return Times(w1, w2); }
template <class W, class K> inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1, const W &k) { const SparseTupleWeight<W, K> t2(k); const SparsePowerWeight<W, K> w2(t2); return Times(w1, w2); }
template <class W, class K> inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1, const W &k, DivideType divide_type = DIVIDE_ANY) { const SparseTupleWeight<W, K> t2(k); const SparsePowerWeight<W, K> w2(t2); return Divide(w1, w2, divide_type); }
// This function object generates weights over the Cartesian power of rank
// n over the underlying weight. This is intended primarily for testing.
template <class W, class K> class WeightGenerate<SparsePowerWeight<W, K>> { public: using Weight = SparsePowerWeight<W, K>; using Generate = WeightGenerate<W>;
explicit WeightGenerate(uint64_t seed = std::random_device()(), bool allow_zero = true, size_t sparse_power_rank = 3) : generate_(seed, allow_zero), sparse_power_rank_(sparse_power_rank) {}
Weight operator()() const { Weight weight; for (size_t i = 1; i <= sparse_power_rank_; ++i) { weight.PushBack(i, generate_(), true); } return weight; }
private: const Generate generate_; const size_t sparse_power_rank_; };
} // namespace fst
#endif // FST_SPARSE_POWER_WEIGHT_H_
|