|
|
// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to compute the union of two FSTs.
#ifndef FST_UNION_H_
#define FST_UNION_H_
#include <algorithm>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/arc.h>
#include <fst/cache.h>
#include <fst/expanded-fst.h>
#include <fst/float-weight.h>
#include <fst/fst.h>
#include <fst/impl-to-fst.h>
#include <fst/mutable-fst.h>
#include <fst/properties.h>
#include <fst/rational.h>
#include <fst/symbol-table.h>
#include <fst/util.h>
namespace fst {
// Computes the union (sum) of two FSTs. This version writes the union to an
// output MutableFst. If A transduces string x to y with weight a and B
// transduces string w to v with weight b, then their union transduces x to y
// with weight a and w to v with weight b.
//
// Complexity:
//
// Time: (V_2 + E_2)
// Space: O(V_2 + E_2)
//
// where Vi is the number of states, and Ei is the number of arcs, in the ith
// FST.
template <class Arc> void Union(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) { // Checks for symbol table compatibility.
if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) { FSTERROR() << "Union: Input/output symbol tables of 1st argument " << "do not match input/output symbol tables of 2nd argument"; fst1->SetProperties(kError, kError); return; } const auto numstates1 = fst1->NumStates(); const bool initial_acyclic1 = fst1->Properties(kInitialAcyclic, false) == kInitialAcyclic; const auto props1 = fst1->Properties(kFstProperties, false); const auto props2 = fst2.Properties(kFstProperties, false); const auto start2 = fst2.Start(); if (start2 == kNoStateId) { if (props2 & kError) fst1->SetProperties(kError, kError); return; } if (std::optional<typename Arc::StateId> numstates2 = fst2.NumStatesIfKnown()) { fst1->ReserveStates(numstates1 + *numstates2 + (initial_acyclic1 ? 0 : 1)); } for (StateIterator<Fst<Arc>> siter(fst2); !siter.Done(); siter.Next()) { const auto s1 = fst1->AddState(); const auto s2 = siter.Value(); fst1->SetFinal(s1, fst2.Final(s2)); fst1->ReserveArcs(s1, fst2.NumArcs(s2)); for (ArcIterator<Fst<Arc>> aiter(fst2, s2); !aiter.Done(); aiter.Next()) { auto arc = aiter.Value(); // Copy intended.
arc.nextstate += numstates1; fst1->AddArc(s1, std::move(arc)); } } const auto start1 = fst1->Start(); if (start1 == kNoStateId) { fst1->SetStart(start2); fst1->SetProperties(props2, kCopyProperties); return; } if (initial_acyclic1) { fst1->AddArc(start1, Arc(0, 0, start2 + numstates1)); } else { const auto nstart1 = fst1->AddState(); fst1->SetStart(nstart1); fst1->AddArc(nstart1, Arc(0, 0, start1)); fst1->AddArc(nstart1, Arc(0, 0, start2 + numstates1)); } fst1->SetProperties(UnionProperties(props1, props2), kFstProperties); }
// Same as the above but can handle arbitrarily many right-hand-side FSTs,
// preallocating the states.
template <class Arc> void Union(MutableFst<Arc> *fst1, const std::vector<const Fst<Arc> *> &fsts2) { // We add 1 just in case fst1 has an initial cycle.
fst1->ReserveStates(1 + fst1->NumStates() + CountStates(fsts2)); for (const auto *fst2 : fsts2) Union(fst1, *fst2); }
// Computes the union of two FSTs, modifying the RationalFst argument.
template <class Arc> void Union(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) { fst1->GetMutableImpl()->AddUnion(fst2); }
using UnionFstOptions = RationalFstOptions;
// Computes the union (sum) of two FSTs. This version is a delayed FST. If A
// transduces string x to y with weight a and B transduces string w to v with
// weight b, then their union transduces x to y with weight a and w to v with
// weight b.
//
// Complexity:
//
// Time: O(v_1 + e_1 + v_2 + e_2)
// Space: O(v_1 + v_2)
//
// where vi is the number of states visited, and ei is the number of arcs
// visited, in the ith FST. Constant time and space to visit an input state or
// arc is assumed and exclusive of caching.
template <class A> class UnionFst : public RationalFst<A> { public: using Arc = A; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight;
UnionFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2) { GetMutableImpl()->InitUnion(fst1, fst2); }
UnionFst(const Fst<Arc> &fst1, const Fst<Arc> &fst2, const UnionFstOptions &opts) : RationalFst<Arc>(opts) { GetMutableImpl()->InitUnion(fst1, fst2); }
// See Fst<>::Copy() for doc.
UnionFst(const UnionFst &fst, bool safe = false) : RationalFst<Arc>(fst, safe) {}
// Gets a copy of this UnionFst. See Fst<>::Copy() for further doc.
UnionFst *Copy(bool safe = false) const override { return new UnionFst(*this, safe); }
private: using ImplToFst<internal::RationalFstImpl<Arc>>::GetImpl; using ImplToFst<internal::RationalFstImpl<Arc>>::GetMutableImpl; };
// Specialization for UnionFst.
template <class Arc> class StateIterator<UnionFst<Arc>> : public StateIterator<RationalFst<Arc>> { public: explicit StateIterator(const UnionFst<Arc> &fst) : StateIterator<RationalFst<Arc>>(fst) {} };
// Specialization for UnionFst.
template <class Arc> class ArcIterator<UnionFst<Arc>> : public ArcIterator<RationalFst<Arc>> { public: using StateId = typename Arc::StateId;
ArcIterator(const UnionFst<Arc> &fst, StateId s) : ArcIterator<RationalFst<Arc>>(fst, s) {} };
using StdUnionFst = UnionFst<StdArc>;
} // namespace fst
#endif // FST_UNION_H_
|