|
|
// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
// 2022 Binbin Zhang (binbzha@qq.com)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder/torch_asr_model.h"
#include <algorithm>
#include <memory>
#include <stdexcept>
#include <utility>
#include "torch/script.h"
#ifndef IOS
#include "torch/torch.h"
#endif
#include <torch/csrc/jit/passes/tensorexpr_fuser.h>
namespace wenet {
#ifndef IOS
void TorchAsrModel::InitEngineThreads(int num_threads) { // For multi-thread performance
at::set_num_threads(num_threads); VLOG(1) << "Num intra-op threads: " << at::get_num_threads(); } #endif
void TorchAsrModel::Read(const std::string& model_path) { torch::DeviceType device = at::kCPU; #ifdef USE_GPU
if (!torch::cuda::is_available()) { VLOG(1) << "CUDA is not available! Please check your GPU settings"; throw std::runtime_error("CUDA is not available!"); } else { VLOG(1) << "CUDA available! Running on GPU"; device = at::kCUDA; } #endif
#ifdef USE_IPEX
torch::jit::setTensorExprFuserEnabled(false); #endif
torch::jit::script::Module model = torch::jit::load(model_path, device); model_ = std::make_shared<TorchModule>(std::move(model)); torch::NoGradGuard no_grad; model_->eval(); torch::jit::IValue o1 = model_->run_method("subsampling_rate"); CHECK_EQ(o1.isInt(), true); subsampling_rate_ = o1.toInt(); torch::jit::IValue o2 = model_->run_method("right_context"); CHECK_EQ(o2.isInt(), true); right_context_ = o2.toInt(); torch::jit::IValue o3 = model_->run_method("sos_symbol"); CHECK_EQ(o3.isInt(), true); sos_ = o3.toInt(); torch::jit::IValue o4 = model_->run_method("eos_symbol"); CHECK_EQ(o4.isInt(), true); eos_ = o4.toInt(); torch::jit::IValue o5 = model_->run_method("is_bidirectional_decoder"); CHECK_EQ(o5.isBool(), true); is_bidirectional_decoder_ = o5.toBool();
torch::jit::setGraphExecutorOptimize(false); torch::jit::FusionStrategy static0 = { {torch::jit::FusionBehavior::STATIC, 0}}; torch::jit::setFusionStrategy(static0);
VLOG(1) << "Torch Model Info:"; VLOG(1) << "\tsubsampling_rate " << subsampling_rate_; VLOG(1) << "\tright context " << right_context_; VLOG(1) << "\tsos " << sos_; VLOG(1) << "\teos " << eos_; VLOG(1) << "\tis bidirectional decoder " << is_bidirectional_decoder_; }
TorchAsrModel::TorchAsrModel(const TorchAsrModel& other) { // 1. Init the model info
right_context_ = other.right_context_; subsampling_rate_ = other.subsampling_rate_; sos_ = other.sos_; eos_ = other.eos_; is_bidirectional_decoder_ = other.is_bidirectional_decoder_; chunk_size_ = other.chunk_size_; num_left_chunks_ = other.num_left_chunks_; offset_ = other.offset_; // 2. Model copy, just copy the model ptr since:
// PyTorch allows using multiple CPU threads during TorchScript model
// inference, please see https://pytorch.org/docs/stable/notes/cpu_
// threading_torchscript_inference.html
model_ = other.model_;
// NOTE(Binbin Zhang):
// inner states for forward are not copied here.
}
std::shared_ptr<AsrModel> TorchAsrModel::Copy() const { auto asr_model = std::make_shared<TorchAsrModel>(*this); // Reset the inner states for new decoding
asr_model->Reset(); return asr_model; }
void TorchAsrModel::Reset() { offset_ = 0; att_cache_ = std::move(torch::zeros({0, 0, 0, 0})); cnn_cache_ = std::move(torch::zeros({0, 0, 0, 0})); encoder_outs_.clear(); cached_feature_.clear(); }
void TorchAsrModel::ForwardEncoderFunc( const std::vector<std::vector<float>>& chunk_feats, std::vector<std::vector<float>>* out_prob) { // 1. Prepare libtorch required data, splice cached_feature_ and chunk_feats
// The first dimension is for batchsize, which is 1.
int num_frames = cached_feature_.size() + chunk_feats.size(); const int feature_dim = chunk_feats[0].size(); torch::Tensor feats = torch::zeros({1, num_frames, feature_dim}, torch::kFloat); for (size_t i = 0; i < cached_feature_.size(); ++i) { torch::Tensor row = torch::from_blob(const_cast<float*>(cached_feature_[i].data()), {feature_dim}, torch::kFloat) .clone(); feats[0][i] = std::move(row); } for (size_t i = 0; i < chunk_feats.size(); ++i) { torch::Tensor row = torch::from_blob(const_cast<float*>(chunk_feats[i].data()), {feature_dim}, torch::kFloat) .clone(); feats[0][cached_feature_.size() + i] = std::move(row); }
// 2. Encoder chunk forward
#ifdef USE_GPU
feats = feats.to(at::kCUDA); att_cache_ = att_cache_.to(at::kCUDA); cnn_cache_ = cnn_cache_.to(at::kCUDA); #endif
int required_cache_size = chunk_size_ * num_left_chunks_; torch::NoGradGuard no_grad; std::vector<torch::jit::IValue> inputs = {feats, offset_, required_cache_size, att_cache_, cnn_cache_};
// Refer interfaces in wenet/transformer/asr_model.py
auto outputs = model_->get_method("forward_encoder_chunk")(inputs).toTuple()->elements(); CHECK_EQ(outputs.size(), 3); #ifdef USE_GPU
torch::Tensor chunk_out = outputs[0].toTensor().to(at::kCPU); att_cache_ = outputs[1].toTensor().to(at::kCPU); cnn_cache_ = outputs[2].toTensor().to(at::kCPU); #else
torch::Tensor chunk_out = outputs[0].toTensor(); att_cache_ = outputs[1].toTensor(); cnn_cache_ = outputs[2].toTensor(); #endif
offset_ += chunk_out.size(1);
// The first dimension of returned value is for batchsize, which is 1
#ifdef USE_GPU
chunk_out = chunk_out.to(at::kCUDA); torch::Tensor ctc_log_probs = model_->run_method("ctc_activation", chunk_out).toTensor(); ctc_log_probs = ctc_log_probs.to(at::kCPU)[0]; encoder_outs_.push_back(std::move(chunk_out.to(at::kCPU))); #else
torch::Tensor ctc_log_probs = model_->run_method("ctc_activation", chunk_out).toTensor()[0]; encoder_outs_.push_back(std::move(chunk_out)); #endif
// Copy to output
int num_outputs = ctc_log_probs.size(0); int output_dim = ctc_log_probs.size(1); out_prob->resize(num_outputs); for (int i = 0; i < num_outputs; i++) { (*out_prob)[i].resize(output_dim); memcpy((*out_prob)[i].data(), ctc_log_probs[i].data_ptr(), sizeof(float) * output_dim); } }
float TorchAsrModel::ComputeAttentionScore(const torch::Tensor& prob, const std::vector<int>& hyp, int eos) { float score = 0.0f; auto accessor = prob.accessor<float, 2>(); for (size_t j = 0; j < hyp.size(); ++j) { score += accessor[j][hyp[j]]; } score += accessor[hyp.size()][eos]; return score; }
void TorchAsrModel::AttentionRescoring( const std::vector<std::vector<int>>& hyps, float reverse_weight, std::vector<float>* rescoring_score) { CHECK(rescoring_score != nullptr); int num_hyps = hyps.size(); rescoring_score->resize(num_hyps, 0.0f);
if (num_hyps == 0) { return; } // No encoder output
if (encoder_outs_.size() == 0) { return; }
torch::NoGradGuard no_grad; // Step 1: Prepare input for libtorch
torch::Tensor hyps_length = torch::zeros({num_hyps}, torch::kLong); int max_hyps_len = 0; for (size_t i = 0; i < num_hyps; ++i) { int length = hyps[i].size() + 1; max_hyps_len = std::max(length, max_hyps_len); hyps_length[i] = static_cast<int64_t>(length); } torch::Tensor hyps_tensor = torch::zeros({num_hyps, max_hyps_len}, torch::kLong); for (size_t i = 0; i < num_hyps; ++i) { const std::vector<int>& hyp = hyps[i]; hyps_tensor[i][0] = sos_; for (size_t j = 0; j < hyp.size(); ++j) { hyps_tensor[i][j + 1] = hyp[j]; } }
// Step 2: Forward attention decoder by hyps and corresponding encoder_outs_
torch::Tensor encoder_out = torch::cat(encoder_outs_, 1); #ifdef USE_GPU
hyps_tensor = hyps_tensor.to(at::kCUDA); hyps_length = hyps_length.to(at::kCUDA); encoder_out = encoder_out.to(at::kCUDA); #endif
auto outputs = model_ ->run_method("forward_attention_decoder", hyps_tensor, hyps_length, encoder_out, reverse_weight) .toTuple() ->elements(); #ifdef USE_GPU
auto probs = outputs[0].toTensor().to(at::kCPU); auto r_probs = outputs[1].toTensor().to(at::kCPU); #else
auto probs = outputs[0].toTensor(); auto r_probs = outputs[1].toTensor(); #endif
CHECK_EQ(probs.size(0), num_hyps); CHECK_EQ(probs.size(1), max_hyps_len);
// Step 3: Compute rescoring score
for (size_t i = 0; i < num_hyps; ++i) { const std::vector<int>& hyp = hyps[i]; float score = 0.0f; // left-to-right decoder score
score = ComputeAttentionScore(probs[i], hyp, eos_); // Optional: Used for right to left score
float r_score = 0.0f; if (is_bidirectional_decoder_ && reverse_weight > 0) { // right-to-left score
CHECK_EQ(r_probs.size(0), num_hyps); CHECK_EQ(r_probs.size(1), max_hyps_len); std::vector<int> r_hyp(hyp.size()); std::reverse_copy(hyp.begin(), hyp.end(), r_hyp.begin()); // right to left decoder score
r_score = ComputeAttentionScore(r_probs[i], r_hyp, eos_); }
// combined left-to-right and right-to-left score
(*rescoring_score)[i] = score * (1 - reverse_weight) + r_score * reverse_weight; } }
} // namespace wenet
|