// Copyright 2005-2024 Google LLC // // Licensed under the Apache License, Version 2.0 (the 'License'); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an 'AS IS' BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Class to encode and decode an FST. #ifndef FST_ENCODE_H_ #define FST_ENCODE_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fst { enum EncodeType { ENCODE = 1, DECODE = 2 }; inline constexpr uint8_t kEncodeLabels = 0x01; inline constexpr uint8_t kEncodeWeights = 0x02; inline constexpr uint8_t kEncodeFlags = 0x03; namespace internal { // Bits storing whether or not an encode table has input and/or output symbol // tables, for internal use only. inline constexpr uint8_t kEncodeHasISymbols = 0x04; inline constexpr uint8_t kEncodeHasOSymbols = 0x08; // Identifies stream data as an encode table (and its endianity). inline constexpr int32_t kEncodeMagicNumber = 2128178506; // TODO(b/141172858): deprecated, remove by 2020-01-01. inline constexpr int32_t kEncodeDeprecatedMagicNumber = 2129983209; } // namespace internal // Header for the encoder table. class EncodeTableHeader { public: EncodeTableHeader() = default; // Getters. const std::string &ArcType() const { return arctype_; } uint8_t Flags() const { return flags_; } size_t Size() const { return size_; } // Setters. void SetArcType(std::string_view arctype) { arctype_ = std::string(arctype); } void SetFlags(uint8_t flags) { flags_ = flags; } void SetSize(size_t size) { size_ = size; } // IO. bool Read(std::istream &strm, std::string_view source); bool Write(std::ostream &strm, std::string_view source) const; private: std::string arctype_; uint8_t flags_; size_t size_; }; namespace internal { // The following class encapsulates implementation details for the encoding and // decoding of label/weight triples used for encoding and decoding of FSTs. The // EncodeTable is bidirectional, i.e, it stores both the Triple of encode labels // and weights to a unique label, and the reverse. template class EncodeTable { public: using Label = typename Arc::Label; using Weight = typename Arc::Weight; // Encoded data consists of arc input/output labels and arc weight. struct Triple { Triple() = default; Triple(Label ilabel, Label olabel, Weight weight) : ilabel(ilabel), olabel(olabel), weight(std::move(weight)) {} // Constructs from arc and flags. Triple(const Arc &arc, uint8_t flags) : ilabel(arc.ilabel), olabel(flags & kEncodeLabels ? arc.olabel : 0), weight(flags & kEncodeWeights ? arc.weight : Weight::One()) {} static std::unique_ptr Read(std::istream &strm) { auto triple = std::make_unique(); ReadType(strm, &triple->ilabel); ReadType(strm, &triple->olabel); ReadType(strm, &triple->weight); return triple; } void Write(std::ostream &strm) const { WriteType(strm, ilabel); WriteType(strm, olabel); WriteType(strm, weight); } // Exploited below for TripleEqual functor. bool operator==(const Triple &other) const { return (ilabel == other.ilabel && olabel == other.olabel && weight == other.weight); } Label ilabel; Label olabel; Weight weight; }; // Equality functor for two Triple pointers. struct TripleEqual { bool operator()(const Triple *x, const Triple *y) const { return *x == *y; } }; // Hash functor for one Triple pointer. class TripleHash { public: explicit TripleHash(uint8_t flags) : flags_(flags) {} size_t operator()(const Triple *triple) const { size_t hash = triple->ilabel; static constexpr int lshift = 5; static constexpr int rshift = CHAR_BIT * sizeof(size_t) - 5; if (flags_ & kEncodeLabels) { hash = hash << lshift ^ hash >> rshift ^ triple->olabel; } if (flags_ & kEncodeWeights) { hash = hash << lshift ^ hash >> rshift ^ triple->weight.Hash(); } return hash; } private: uint8_t flags_; }; explicit EncodeTable(uint8_t flags) : flags_(flags), triple2label_(1024, TripleHash(flags)) {} // Given an arc, encodes either input/output labels or input/costs or both. Label Encode(const Arc &arc) { // Encoding weights of a weighted superfinal transition could result in // a clash with a true epsilon arc; to avoid this we hallucinate kNoLabel // labels instead. if (arc.nextstate == kNoStateId && (flags_ & kEncodeWeights)) { return Encode(std::make_unique(kNoLabel, kNoLabel, arc.weight)); } else { return Encode(std::make_unique(arc, flags_)); } } // Given an encoded arc label, decodes back to input/output labels and costs. const Triple *Decode(Label label) const { if (label < 1 || label > triples_.size()) { LOG(ERROR) << "EncodeTable::Decode: Unknown decode label: " << label; return nullptr; } return triples_[label - 1].get(); } size_t Size() const { return triples_.size(); } static EncodeTable *Read(std::istream &strm, std::string_view source); bool Write(std::ostream &strm, std::string_view source) const; // This is masked to hide internal-only isymbol and osymbol bits. uint8_t Flags() const { return flags_ & kEncodeFlags; } const SymbolTable *InputSymbols() const { return isymbols_.get(); } const SymbolTable *OutputSymbols() const { return osymbols_.get(); } void SetInputSymbols(const SymbolTable *syms) { if (syms) { isymbols_.reset(syms->Copy()); flags_ |= kEncodeHasISymbols; } else { isymbols_.reset(); flags_ &= ~kEncodeHasISymbols; } } void SetOutputSymbols(const SymbolTable *syms) { if (syms) { osymbols_.reset(syms->Copy()); flags_ |= kEncodeHasOSymbols; } else { osymbols_.reset(); flags_ &= ~kEncodeHasOSymbols; } } private: Label Encode(std::unique_ptr triple) { auto insert_result = triple2label_.emplace(triple.get(), triples_.size() + 1); if (insert_result.second) triples_.push_back(std::move(triple)); return insert_result.first->second; } uint8_t flags_; std::vector> triples_; std::unordered_map triple2label_; std::unique_ptr isymbols_; std::unique_ptr osymbols_; EncodeTable(const EncodeTable &) = delete; EncodeTable &operator=(const EncodeTable &) = delete; }; template EncodeTable *EncodeTable::Read(std::istream &strm, std::string_view source) { EncodeTableHeader hdr; if (!hdr.Read(strm, source)) return nullptr; const auto flags = hdr.Flags(); const auto size = hdr.Size(); auto table = std::make_unique(flags); for (int64_t i = 0; i < size; ++i) { table->triples_.emplace_back(std::move(Triple::Read(strm))); table->triple2label_[table->triples_.back().get()] = table->triples_.size(); } if (flags & kEncodeHasISymbols) { table->isymbols_.reset(SymbolTable::Read(strm, source)); } if (flags & kEncodeHasOSymbols) { table->osymbols_.reset(SymbolTable::Read(strm, source)); } if (!strm) { LOG(ERROR) << "EncodeTable::Read: Read failed: " << source; return nullptr; } return table.release(); } template bool EncodeTable::Write(std::ostream &strm, std::string_view source) const { EncodeTableHeader hdr; hdr.SetArcType(Arc::Type()); hdr.SetFlags(flags_); // Real flags, not masked ones. hdr.SetSize(Size()); if (!hdr.Write(strm, source)) return false; for (const auto &triple : triples_) triple->Write(strm); if (flags_ & kEncodeHasISymbols) isymbols_->Write(strm); if (flags_ & kEncodeHasOSymbols) osymbols_->Write(strm); strm.flush(); if (!strm) { LOG(ERROR) << "EncodeTable::Write: Write failed: " << source; return false; } return true; } } // namespace internal // A mapper to encode/decode weighted transducers. Encoding of an FST is used // for performing classical determinization or minimization on a weighted // transducer viewing it as an unweighted acceptor over encoded labels. // // The mapper stores the encoding in a local hash table (EncodeTable). This // table is shared (and reference-counted) between the encoder and decoder. // A decoder has read-only access to the EncodeTable. // // The EncodeMapper allows on the fly encoding of the machine. As the // EncodeTable is generated the same table may by used to decode the machine // on the fly. For example in the following sequence of operations // // Encode -> Determinize -> Decode // // we will use the encoding table generated during the encode step in the // decode, even though the encoding is not complete. template class EncodeMapper { using Label = typename Arc::Label; using Weight = typename Arc::Weight; public: explicit EncodeMapper(uint8_t flags, EncodeType type = ENCODE) : flags_(flags), type_(type), table_(std::make_shared>(flags)), error_(false) {} EncodeMapper(const EncodeMapper &mapper) : flags_(mapper.flags_), type_(mapper.type_), table_(mapper.table_), error_(false) {} // Copy constructor but setting the type, typically to DECODE. EncodeMapper(const EncodeMapper &mapper, EncodeType type) : flags_(mapper.flags_), type_(type), table_(mapper.table_), error_(mapper.error_) {} Arc operator()(const Arc &arc); MapFinalAction FinalAction() const { return (type_ == ENCODE && (flags_ & kEncodeWeights)) ? MAP_REQUIRE_SUPERFINAL : MAP_NO_SUPERFINAL; } constexpr MapSymbolsAction InputSymbolsAction() const { return MAP_CLEAR_SYMBOLS; } constexpr MapSymbolsAction OutputSymbolsAction() const { return MAP_CLEAR_SYMBOLS; } uint8_t Flags() const { return flags_; } uint64_t Properties(uint64_t inprops) { uint64_t outprops = inprops; if (error_) outprops |= kError; uint64_t mask = kFstProperties; if (flags_ & kEncodeLabels) { mask &= kILabelInvariantProperties & kOLabelInvariantProperties; } if (flags_ & kEncodeWeights) { mask &= kILabelInvariantProperties & kWeightInvariantProperties & (type_ == ENCODE ? kAddSuperFinalProperties : kRmSuperFinalProperties); } if (type_ == ENCODE) mask |= kIDeterministic; outprops &= mask; if (type_ == ENCODE) { if (flags_ & kEncodeLabels) { outprops |= kAcceptor; } if (flags_ & kEncodeWeights) { outprops |= kUnweighted | kUnweightedCycles; } } return outprops; } EncodeType Type() const { return type_; } static EncodeMapper *Read(std::istream &strm, std::string_view source, EncodeType type = ENCODE) { auto *table = internal::EncodeTable::Read(strm, source); return table ? new EncodeMapper(table->Flags(), type, table) : nullptr; } static EncodeMapper *Read(std::string_view source, EncodeType type = ENCODE) { std::ifstream strm(std::string(source), std::ios_base::in | std::ios_base::binary); if (!strm) { LOG(ERROR) << "EncodeMapper: Can't open file: " << source; return nullptr; } return Read(strm, source, type); } bool Write(std::ostream &strm, std::string_view source) const { return table_->Write(strm, source); } bool Write(std::string_view source) const { std::ofstream strm(std::string(source), std::ios_base::out | std::ios_base::binary); if (!strm) { LOG(ERROR) << "EncodeMapper: Can't open file: " << source; return false; } return Write(strm, source); } const SymbolTable *InputSymbols() const { return table_->InputSymbols(); } const SymbolTable *OutputSymbols() const { return table_->OutputSymbols(); } void SetInputSymbols(const SymbolTable *syms) { table_->SetInputSymbols(syms); } void SetOutputSymbols(const SymbolTable *syms) { table_->SetOutputSymbols(syms); } private: uint8_t flags_; EncodeType type_; std::shared_ptr> table_; bool error_; explicit EncodeMapper(uint8_t flags, EncodeType type, internal::EncodeTable *table) : flags_(flags), type_(type), table_(table), error_(false) {} EncodeMapper &operator=(const EncodeMapper &) = delete; }; template Arc EncodeMapper::operator()(const Arc &arc) { if (type_ == ENCODE) { // If this arc is a hallucinated final state, and we're either not encoding // weights, or we're encoding weights but this is non-final, we use an // identity-encoding. if (arc.nextstate == kNoStateId && ((!(flags_ & kEncodeWeights) || ((flags_ & kEncodeWeights) && arc.weight == Weight::Zero())))) { return arc; } else { const auto label = table_->Encode(arc); return Arc(label, flags_ & kEncodeLabels ? label : arc.olabel, flags_ & kEncodeWeights ? Weight::One() : arc.weight, arc.nextstate); } } else { // type_ == DECODE if (arc.nextstate == kNoStateId) { return arc; } else { if (arc.ilabel == 0) return arc; if (flags_ & kEncodeLabels && arc.ilabel != arc.olabel) { FSTERROR() << "EncodeMapper: Label-encoded arc has different " "input and output labels"; error_ = true; } if (flags_ & kEncodeWeights && arc.weight != Weight::One()) { FSTERROR() << "EncodeMapper: Weight-encoded arc has non-trivial weight"; error_ = true; } const auto triple = table_->Decode(arc.ilabel); if (!triple) { FSTERROR() << "EncodeMapper: Decode failed"; error_ = true; return Arc(kNoLabel, kNoLabel, Weight::NoWeight(), arc.nextstate); } else if (triple->ilabel == kNoLabel) { // Hallucinated kNoLabel from a weighted superfinal transition. return Arc(0, 0, triple->weight, arc.nextstate); } else { return Arc(triple->ilabel, flags_ & kEncodeLabels ? triple->olabel : arc.olabel, flags_ & kEncodeWeights ? triple->weight : arc.weight, arc.nextstate); } } } } // Complexity: O(E + V). template inline void Encode(MutableFst *fst, EncodeMapper *mapper) { mapper->SetInputSymbols(fst->InputSymbols()); mapper->SetOutputSymbols(fst->OutputSymbols()); ArcMap(fst, mapper); } template inline void Decode(MutableFst *fst, const EncodeMapper &mapper) { ArcMap(fst, EncodeMapper(mapper, DECODE)); RmFinalEpsilon(fst); fst->SetInputSymbols(mapper.InputSymbols()); fst->SetOutputSymbols(mapper.OutputSymbols()); } // On-the-fly encoding of an input FST. // // Complexity: // // Construction: O(1) // Traversal: O(e + v) // // where e is the number of arcs visited and v is the number of states visited. // Constant time and space to visit an input state or arc is assumed and // exclusive of caching. template class EncodeFst : public ArcMapFst> { public: using Mapper = EncodeMapper; using Impl = internal::ArcMapFstImpl; EncodeFst(const Fst &fst, Mapper *encoder) : ArcMapFst(fst, encoder, ArcMapFstOptions()) { encoder->SetInputSymbols(fst.InputSymbols()); encoder->SetOutputSymbols(fst.OutputSymbols()); } EncodeFst(const Fst &fst, const Mapper &encoder) : ArcMapFst(fst, encoder, ArcMapFstOptions()) {} // See Fst<>::Copy() for doc. EncodeFst(const EncodeFst &fst, bool copy = false) : ArcMapFst(fst, copy) {} // Makes a copy of this EncodeFst. See Fst<>::Copy() for further doc. EncodeFst *Copy(bool safe = false) const override { if (safe) { FSTERROR() << "EncodeFst::Copy(true): Not allowed"; GetImpl()->SetProperties(kError, kError); } return new EncodeFst(*this); } private: using ImplToFst::GetImpl; using ImplToFst::GetMutableImpl; }; // On-the-fly decoding of an input FST. // // Complexity: // // Construction: O(1). // Traversal: O(e + v) // // Constant time and space to visit an input state or arc is assumed and // exclusive of caching. template class DecodeFst : public ArcMapFst> { public: using Mapper = EncodeMapper; using Impl = internal::ArcMapFstImpl; DecodeFst(const Fst &fst, const Mapper &encoder) : ArcMapFst(fst, Mapper(encoder, DECODE), ArcMapFstOptions()) { GetMutableImpl()->SetInputSymbols(encoder.InputSymbols()); GetMutableImpl()->SetOutputSymbols(encoder.OutputSymbols()); } // See Fst<>::Copy() for doc. DecodeFst(const DecodeFst &fst, bool safe = false) : ArcMapFst(fst, safe) {} // Makes a copy of this DecodeFst. See Fst<>::Copy() for further doc. DecodeFst *Copy(bool safe = false) const override { return new DecodeFst(*this, safe); } private: using ImplToFst::GetImpl; using ImplToFst::GetMutableImpl; }; // Specialization for EncodeFst. template class StateIterator> : public StateIterator>> { public: explicit StateIterator(const EncodeFst &fst) : StateIterator>>(fst) {} }; // Specialization for EncodeFst. template class ArcIterator> : public ArcIterator>> { public: ArcIterator(const EncodeFst &fst, typename Arc::StateId s) : ArcIterator>>(fst, s) {} }; // Specialization for DecodeFst. template class StateIterator> : public StateIterator>> { public: explicit StateIterator(const DecodeFst &fst) : StateIterator>>(fst) {} }; // Specialization for DecodeFst. template class ArcIterator> : public ArcIterator>> { public: ArcIterator(const DecodeFst &fst, typename Arc::StateId s) : ArcIterator>>(fst, s) {} }; // Useful aliases when using StdArc. using StdEncodeFst = EncodeFst; using StdDecodeFst = DecodeFst; } // namespace fst #endif // FST_ENCODE_H_