// Copyright 2005-2024 Google LLC // // Licensed under the Apache License, Version 2.0 (the 'License'); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an 'AS IS' BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // See www.openfst.org for extensive documentation on this weighted // finite-state transducer library. // // Regression test for FST classes. #ifndef FST_TEST_FST_TEST_H_ #define FST_TEST_FST_TEST_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fst { // This tests an Fst F that is assumed to have a copy method from an // arbitrary Fst. Some test functions make further assumptions mostly // obvious from their name. These tests are written as member temple // functions that take a test fst as its argument so that different // Fsts in the interface hierarchy can be tested separately and so // that we can instantiate only those tests that make sense for a // particular Fst. template class FstTester { public: using Arc = typename F::Arc; using StateId = typename Arc::StateId; using Weight = typename Arc::Weight; using Label = typename Arc::Label; explicit FstTester(size_t num_states = 128, bool weighted = true) : num_states_(num_states), weighted_(weighted) { VectorFst vfst; InitFst(&vfst, num_states); testfst_ = std::make_unique(vfst); } // This verifies the contents described in InitFst() using // methods defined in a generic Fst. template void TestBase(const G &fst) const { StateId ns = 0; StateIterator siter(fst); Matcher matcher(fst, MATCH_INPUT); MatchType match_type = matcher.Type(true); bool has_states = false; for (; !siter.Done(); siter.Next()) { has_states = true; } CHECK_EQ(fst.Start(), has_states ? 0 : kNoStateId); for (siter.Reset(); !siter.Done(); siter.Next()) { StateId s = siter.Value(); matcher.SetState(s); CHECK_EQ(fst.Final(s), NthWeight(s)); size_t na = 0; ArcIterator aiter(fst, s); for (; !aiter.Done(); aiter.Next()) { } for (aiter.Reset(); !aiter.Done(); aiter.Next()) { ++na; const Arc &arc = aiter.Value(); CHECK_EQ(arc.ilabel, na); CHECK_EQ(arc.olabel, 0); CHECK_EQ(arc.weight, NthWeight(na)); if (na == ns + 1) { CHECK_EQ(arc.nextstate, s == num_states_ - 1 ? 0 : s + 1); } else { CHECK_EQ(arc.nextstate, s); } if (match_type == MATCH_INPUT) { CHECK(matcher.Find(arc.ilabel)); CHECK_EQ(matcher.Value().ilabel, arc.ilabel); } } CHECK_EQ(na, s + 1); CHECK_EQ(na, aiter.Position()); CHECK_EQ(fst.NumArcs(s), s + 1); CHECK_EQ(fst.NumInputEpsilons(s), 0); CHECK_EQ(fst.NumOutputEpsilons(s), s + 1); CHECK(!matcher.Find(s + 2)); // out-of-range CHECK(!matcher.Find(kNoLabel)); // no explicit input epsilons CHECK(matcher.Find(0)); CHECK_EQ(matcher.Value().ilabel, kNoLabel); // implicit epsilon loop ++ns; } CHECK_EQ(num_states_, ns); CHECK(Verify(fst)); CHECK(fst.Properties(ns > 0 ? kNotAcceptor : kAcceptor, true)); CHECK(fst.Properties(ns > 0 ? kOEpsilons : kNoOEpsilons, true)); } void TestBase() const { TestBase(*testfst_); } // This verifies methods specfic to an ExpandedFst. template void TestExpanded(const G &fst) const { CHECK_EQ(fst.NumStates(), num_states_); StateId ns = 0; for (StateIterator siter(fst); !siter.Done(); siter.Next()) { ++ns; } CHECK_EQ(fst.NumStates(), ns); CHECK(fst.Properties(kExpanded, false)); } void TestExpanded() const { TestExpanded(*testfst_); } // This verifies methods specific to a MutableFst. template void TestMutable(G *fst) const { for (StateIterator siter(*fst); !siter.Done(); siter.Next()) { StateId s = siter.Value(); size_t na = 0; size_t ni = fst->NumInputEpsilons(s); MutableArcIterator aiter(fst, s); for (; !aiter.Done(); aiter.Next()) { } for (aiter.Reset(); !aiter.Done(); aiter.Next()) { ++na; Arc arc = aiter.Value(); arc.ilabel = 0; aiter.SetValue(arc); arc = aiter.Value(); CHECK_EQ(arc.ilabel, 0); CHECK_EQ(fst->NumInputEpsilons(s), ni + 1); arc.ilabel = na; aiter.SetValue(arc); CHECK_EQ(fst->NumInputEpsilons(s), ni); } } { std::unique_ptr cfst1(fst->Copy()); cfst1->DeleteStates(); CHECK_EQ(cfst1->NumStates(), 0); } std::unique_ptr cfst2(fst->Copy()); for (StateIterator siter(*cfst2); !siter.Done(); siter.Next()) { StateId s = siter.Value(); cfst2->DeleteArcs(s); CHECK_EQ(cfst2->NumArcs(s), 0); CHECK_EQ(cfst2->NumInputEpsilons(s), 0); CHECK_EQ(cfst2->NumOutputEpsilons(s), 0); } } void TestMutable() { TestMutable(testfst_.get()); } // This verifies operator= template void TestAssign(const G &fst) const { // Assignment from G G afst1; afst1 = fst; CHECK(Equal(fst, afst1)); // Assignment from Fst G afst2; afst2 = static_cast &>(fst); CHECK(Equal(fst, afst2)); // Assignment from self afst2.operator=(afst2); CHECK(Equal(fst, afst2)); } void TestAssign() { TestAssign(*testfst_); } // This verifies the copy constructor and Copy method. template void TestCopy(const G &fst) const { // Copy from G G c1fst(fst); TestBase(c1fst); // Copy from Fst const G c2fst(static_cast &>(fst)); TestBase(c2fst); // Copy from self std::unique_ptr c3fst(fst.Copy()); TestBase(*c3fst); } void TestCopy() const { TestCopy(*testfst_); } // This verifies the read/write methods. template void TestIO(const G &fst) const { const std::string filename = FST_FLAGS_tmpdir + "/test.fst"; const std::string aligned = FST_FLAGS_tmpdir + "/aligned.fst"; { // write/read CHECK(fst.Write(filename)); auto ffst = fst::WrapUnique(G::Read(filename)); CHECK(ffst); TestBase(*ffst); } { // generic read/cast/test auto gfst = fst::WrapUnique(Fst::Read(filename)); CHECK(gfst); G *dfst = down_cast(gfst.get()); TestBase(*dfst); // generic write/read/test CHECK(gfst->Write(filename)); auto hfst = fst::WrapUnique(Fst::Read(filename)); CHECK(hfst); TestBase(*hfst); } { // check mmaping by first writing the file with the aligned attribute set { std::ofstream ostr(aligned); FstWriteOptions opts; opts.source = aligned; opts.align = true; CHECK(fst.Write(ostr, opts)); } std::ifstream istr(aligned); FstReadOptions opts; opts.mode = FstReadOptions::ReadMode("map"); opts.source = aligned; auto gfst = fst::WrapUnique(G::Read(istr, opts)); CHECK(gfst); TestBase(*gfst); } // check mmaping of unaligned files to make sure it does not fail. { { std::ofstream ostr(aligned); FstWriteOptions opts; opts.source = aligned; opts.align = false; CHECK(fst.Write(ostr, opts)); } std::ifstream istr(aligned); FstReadOptions opts; opts.mode = FstReadOptions::ReadMode("map"); opts.source = aligned; auto gfst = fst::WrapUnique(G::Read(istr, opts)); CHECK(gfst); TestBase(*gfst); } // expanded write/read/test if (fst.Properties(kExpanded, false)) { auto efst = fst::WrapUnique(ExpandedFst::Read(filename)); CHECK(efst); TestBase(*efst); TestExpanded(*efst); } // mutable write/read/test if (fst.Properties(kMutable, false)) { auto mfst = fst::WrapUnique(MutableFst::Read(filename)); CHECK(mfst); TestBase(*mfst); TestExpanded(*mfst); TestMutable(mfst.get()); } } void TestIO() const { TestIO(*testfst_); } private: // This constructs test FSTs. Given a mutable FST, will leave // the FST as follows: // (I) NumStates() = nstates // (II) Start() = 0 // (III) Final(s) = NthWeight(s) // (IV) For state s: // (a) NumArcs(s) == s + 1 // (b) For ith arc (i: 1 to s) of s: // (1) ilabel = i // (2) olabel = 0 // (3) weight = NthWeight(i) // (4) nextstate = s // (c) s+1st arc of s: // (1) ilabel = s + 1 // (2) olabel = 0 // (3) weight = NthWeight(s + 1) // (4) nextstate = s + 1 if s < nstates - 1 // 0 if s == nstates - 1 void InitFst(MutableFst *fst, size_t nstates) const { fst->DeleteStates(); for (StateId s = 0; s < nstates; ++s) { fst->AddState(); fst->SetFinal(s, NthWeight(s)); for (size_t i = 1; i <= s; ++i) { Arc arc(i, 0, NthWeight(i), s); fst->AddArc(s, arc); } fst->AddArc( s, Arc(s + 1, 0, NthWeight(s + 1), s == nstates - 1 ? 0 : s + 1)); } if (nstates > 0) fst->SetStart(0); } // Generates One() + ... + One() (n times) if weighted_, // otherwise One(). Weight NthWeight(int n) const { if (!weighted_) return Weight::One(); Weight w = Weight::Zero(); for (int i = 0; i < n; ++i) w = Plus(w, Weight::One()); return w; } size_t num_states_ = 0; bool weighted_ = true; std::unique_ptr testfst_; // what we're testing }; } // namespace fst #endif // FST_TEST_FST_TEST_H_