You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

418 lines
13 KiB

// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to represent and operate on sets of intervals.
#ifndef FST_INTERVAL_SET_H_
#define FST_INTERVAL_SET_H_
#include <algorithm>
#include <initializer_list>
#include <iostream>
#include <istream>
#include <ostream>
#include <vector>
#include <fst/util.h>
namespace fst {
// Half-open integral interval [a, b) of signed integers of type T.
template <class T>
struct IntInterval {
T begin;
T end;
IntInterval() : begin(-1), end(-1) {}
IntInterval(T begin, T end) : begin(begin), end(end) {}
bool operator<(const IntInterval<T> &i) const {
return begin < i.begin || (begin == i.begin && end > i.end);
}
bool operator==(const IntInterval<T> &i) const {
return begin == i.begin && end == i.end;
}
bool operator!=(const IntInterval<T> &i) const {
return begin != i.begin || end != i.end;
}
std::istream &Read(std::istream &strm) {
T n;
ReadType(strm, &n);
begin = n;
ReadType(strm, &n);
end = n;
return strm;
}
std::ostream &Write(std::ostream &strm) const {
T n = begin;
WriteType(strm, n);
n = end;
WriteType(strm, n);
return strm;
}
};
// Stores IntIntervals<T> in a vector. In addition, keeps the count of points in
// all intervals.
template <class T>
class VectorIntervalStore {
public:
using Interval = IntInterval<T>;
using Iterator = typename std::vector<Interval>::const_iterator;
VectorIntervalStore() : count_(-1) {}
VectorIntervalStore(std::initializer_list<Interval> intervals_init)
: intervals_(intervals_init), count_(-1) {}
std::vector<Interval> *MutableIntervals() { return &intervals_; }
const Interval *Intervals() const { return intervals_.data(); }
T Size() const { return intervals_.size(); }
T Count() const { return count_; }
void SetCount(T count) { count_ = count; }
void Clear() {
intervals_.clear();
count_ = 0;
}
Iterator begin() const { return intervals_.begin(); }
Iterator end() const { return intervals_.end(); }
std::istream &Read(std::istream &strm) {
ReadType(strm, &intervals_);
return ReadType(strm, &count_);
}
std::ostream &Write(std::ostream &strm) const {
WriteType(strm, intervals_);
return WriteType(strm, count_);
}
private:
std::vector<Interval> intervals_;
T count_;
};
// Stores and operates on a set of half-open integral intervals [a, b)
// of signed integers of type T.
template <class T, class Store = VectorIntervalStore<T>>
class IntervalSet {
public:
using Interval = IntInterval<T>;
IntervalSet(std::initializer_list<Interval> intervals_init)
: intervals_(intervals_init) {}
template <class... A>
explicit IntervalSet(A... args) : intervals_(args...) {}
// Returns the interval set as a vector.
std::vector<Interval> *MutableIntervals() {
return intervals_.MutableIntervals();
}
// Returns a pointer to an array of Size() elements.
const Interval *Intervals() const { return intervals_.Intervals(); }
bool Empty() const { return Size() == 0; }
T Size() const { return intervals_.Size(); }
// Number of points in the intervals (undefined if not normalized).
T Count() const { return intervals_.Count(); }
void Clear() { intervals_.Clear(); }
// Adds an interval set to the set. The result may not be normalized.
void Union(const IntervalSet<T, Store> &iset) {
intervals_.MutableIntervals()->insert(intervals_.MutableIntervals()->end(),
iset.intervals_.begin(),
iset.intervals_.end());
}
// Requires intervals be normalized.
bool Member(T value) const {
const Interval interval(value, value);
auto lb = std::lower_bound(intervals_.begin(), intervals_.end(), interval);
if (lb == intervals_.begin()) return false;
return (--lb)->end > value;
}
// Requires intervals be normalized.
bool operator==(const IntervalSet<T, Store> &iset) const {
return Size() == iset.Size() &&
std::equal(intervals_.begin(), intervals_.end(),
iset.intervals_.begin());
}
// Requires intervals be normalized.
bool operator!=(const IntervalSet<T, Store> &iset) const {
return Size() != iset.Size() ||
!std::equal(intervals_.begin(), intervals_.end(),
iset.intervals_.begin());
}
bool Singleton() const {
return Size() == 1 &&
intervals_.begin()->begin + 1 == intervals_.begin()->end;
}
// Sorts, collapses overlapping and adjacent interals, and sets count.
void Normalize();
// Intersects an interval set with the set. Requires intervals be normalized.
// The result is normalized.
void Intersect(const IntervalSet<T, Store> &iset,
IntervalSet<T, Store> *oset) const;
// Complements the set w.r.t [0, maxval). Requires intervals be normalized.
// The result is normalized.
void Complement(T maxval, IntervalSet<T, Store> *oset) const;
// Subtract an interval set from the set. Requires intervals be normalized.
// The result is normalized.
void Difference(const IntervalSet<T, Store> &iset,
IntervalSet<T, Store> *oset) const;
// Determines if an interval set overlaps with the set. Requires intervals be
// normalized.
bool Overlaps(const IntervalSet<T, Store> &iset) const;
// Determines if an interval set overlaps with the set but neither is
// contained in the other. Requires intervals be normalized.
bool StrictlyOverlaps(const IntervalSet<T, Store> &iset) const;
// Determines if an interval set is contained within the set. Requires
// intervals be normalized.
bool Contains(const IntervalSet<T, Store> &iset) const;
std::istream &Read(std::istream &strm) { return intervals_.Read(strm); }
std::ostream &Write(std::ostream &strm) const {
return intervals_.Write(strm);
}
typename Store::Iterator begin() const { return intervals_.begin(); }
typename Store::Iterator end() const { return intervals_.end(); }
private:
Store intervals_;
};
// Sorts, collapses overlapping and adjacent intervals, and sets count.
template <typename T, class Store>
void IntervalSet<T, Store>::Normalize() {
auto &intervals = *intervals_.MutableIntervals();
std::sort(intervals.begin(), intervals.end());
T count = 0;
T size = 0;
for (T i = 0; i < intervals.size(); ++i) {
auto &inti = intervals[i];
if (inti.begin == inti.end) continue;
for (T j = i + 1; j < intervals.size(); ++j) {
auto &intj = intervals[j];
if (intj.begin > inti.end) break;
if (intj.end > inti.end) inti.end = intj.end;
++i;
}
count += inti.end - inti.begin;
intervals[size++] = inti;
}
intervals.resize(size);
intervals_.SetCount(count);
}
// Intersects an interval set with the set. Requires intervals be normalized.
// The result is normalized.
template <typename T, class Store>
void IntervalSet<T, Store>::Intersect(const IntervalSet<T, Store> &iset,
IntervalSet<T, Store> *oset) const {
auto *ointervals = oset->MutableIntervals();
auto it1 = intervals_.begin();
auto it2 = iset.intervals_.begin();
ointervals->clear();
T count = 0;
while (it1 != intervals_.end() && it2 != iset.intervals_.end()) {
if (it1->end <= it2->begin) {
++it1;
} else if (it2->end <= it1->begin) {
++it2;
} else {
ointervals->emplace_back(std::max(it1->begin, it2->begin),
std::min(it1->end, it2->end));
count += ointervals->back().end - ointervals->back().begin;
if (it1->end < it2->end) {
++it1;
} else {
++it2;
}
}
}
oset->intervals_.SetCount(count);
}
// Complements the set w.r.t [0, maxval). Requires intervals be normalized.
// The result is normalized.
template <typename T, class Store>
void IntervalSet<T, Store>::Complement(T maxval,
IntervalSet<T, Store> *oset) const {
auto *ointervals = oset->MutableIntervals();
ointervals->clear();
T count = 0;
Interval interval;
interval.begin = 0;
for (const auto current_interval : intervals_) {
interval.end = std::min(current_interval.begin, maxval);
if ((interval.begin) < (interval.end)) {
ointervals->push_back(interval);
count += interval.end - interval.begin;
}
interval.begin = current_interval.end;
}
interval.end = maxval;
if ((interval.begin) < (interval.end)) {
ointervals->push_back(interval);
count += interval.end - interval.begin;
}
oset->intervals_.SetCount(count);
}
// Subtract an interval set from the set. Requires intervals be normalized.
// The result is normalized.
template <typename T, class Store>
void IntervalSet<T, Store>::Difference(const IntervalSet<T, Store> &iset,
IntervalSet<T, Store> *oset) const {
if (Empty()) {
oset->MutableIntervals()->clear();
oset->intervals_.SetCount(0);
} else {
IntervalSet<T, Store> cset;
iset.Complement(intervals_.Intervals()[intervals_.Size() - 1].end, &cset);
Intersect(cset, oset);
}
}
// Determines if an interval set overlaps with the set. Requires intervals be
// normalized.
template <typename T, class Store>
bool IntervalSet<T, Store>::Overlaps(const IntervalSet<T, Store> &iset) const {
auto it1 = intervals_.begin();
auto it2 = iset.intervals_.begin();
while (it1 != intervals_.end() && it2 != iset.intervals_.end()) {
if (it1->end <= it2->begin) {
++it1;
} else if (it2->end <= it1->begin) {
++it2;
} else {
return true;
}
}
return false;
}
// Determines if an interval set overlaps with the set but neither is contained
// in the other. Requires intervals be normalized.
template <typename T, class Store>
bool IntervalSet<T, Store>::StrictlyOverlaps(
const IntervalSet<T, Store> &iset) const {
auto it1 = intervals_.begin();
auto it2 = iset.intervals_.begin();
bool only1 = false; // Point in intervals_ but not intervals.
bool only2 = false; // Point in intervals but not intervals_.
bool overlap = false; // Point in both intervals_ and intervals.
while (it1 != intervals_.end() && it2 != iset.intervals_.end()) {
if (it1->end <= it2->begin) { // no overlap - it1 first
only1 = true;
++it1;
} else if (it2->end <= it1->begin) { // no overlap - it2 first
only2 = true;
++it2;
} else if (it2->begin == it1->begin && it2->end == it1->end) { // equals
overlap = true;
++it1;
++it2;
} else if (it2->begin <= it1->begin && it2->end >= it1->end) { // 1 c 2
only2 = true;
overlap = true;
++it1;
} else if (it1->begin <= it2->begin && it1->end >= it2->end) { // 2 c 1
only1 = true;
overlap = true;
++it2;
} else { // Strict overlap.
only1 = true;
only2 = true;
overlap = true;
}
if (only1 == true && only2 == true && overlap == true) return true;
}
if (it1 != intervals_.end()) only1 = true;
if (it2 != iset.intervals_.end()) only2 = true;
return only1 == true && only2 == true && overlap == true;
}
// Determines if an interval set is contained within the set. Requires intervals
// be normalized.
template <typename T, class Store>
bool IntervalSet<T, Store>::Contains(const IntervalSet<T, Store> &iset) const {
if (iset.Count() > Count()) return false;
auto it1 = intervals_.begin();
auto it2 = iset.intervals_.begin();
while (it1 != intervals_.end() && it2 != iset.intervals_.end()) {
if ((it1->end) <= (it2->begin)) { // No overlap; it1 first.
++it1;
} else if ((it2->begin) < (it1->begin) ||
(it2->end) > (it1->end)) { // No C.
return false;
} else if (it2->end == it1->end) {
++it1;
++it2;
} else {
++it2;
}
}
return it2 == iset.intervals_.end();
}
template <typename T, class Store>
std::ostream &operator<<(std::ostream &strm, const IntervalSet<T, Store> &s) {
strm << "{";
for (T i = 0; i < s.Size(); ++i) {
if (i > 0) {
strm << ",";
}
const auto &interval = s.Intervals()[i];
strm << "[" << interval.begin << "," << interval.end << ")";
}
strm << "}";
return strm;
}
} // namespace fst
#endif // FST_INTERVAL_SET_H_