You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

612 lines
23 KiB

// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to determine if a non-epsilon label can be read as the first
// non-epsilon symbol along some path from a given state.
#ifndef FST_LABEL_REACHABLE_H_
#define FST_LABEL_REACHABLE_H_
#include <sys/types.h>
#include <cstddef>
#include <istream>
#include <memory>
#include <ostream>
#include <utility>
#include <vector>
#include <fst/log.h>
#include <fst/accumulator.h>
#include <fst/arcsort.h>
#include <fst/fst.h>
#include <fst/interval-set.h>
#include <fst/mutable-fst.h>
#include <fst/properties.h>
#include <fst/state-reachable.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
#include <unordered_map>
namespace fst {
// Stores shareable data for label reachable class copies.
template <typename Label>
class LabelReachableData {
public:
using LabelIntervalSet = IntervalSet<Label>;
using Interval = typename LabelIntervalSet::Interval;
explicit LabelReachableData(bool reach_input, bool keep_relabel_data = true)
: reach_input_(reach_input),
keep_relabel_data_(keep_relabel_data),
have_relabel_data_(true),
final_label_(kNoLabel) {}
~LabelReachableData() = default;
bool ReachInput() const { return reach_input_; }
std::vector<LabelIntervalSet> *MutableIntervalSets() {
return &interval_sets_;
}
const LabelIntervalSet &GetIntervalSet(int s) const {
return interval_sets_[s];
}
int NumIntervalSets() const { return interval_sets_.size(); }
std::unordered_map<Label, Label> *MutableLabel2Index() {
if (!have_relabel_data_) {
FSTERROR() << "LabelReachableData: No relabeling data";
}
return &label2index_;
}
const std::unordered_map<Label, Label> *Label2Index() const {
if (!have_relabel_data_) {
FSTERROR() << "LabelReachableData: No relabeling data";
}
return &label2index_;
}
void SetFinalLabel(Label final_label) { final_label_ = final_label; }
Label FinalLabel() const { return final_label_; }
static LabelReachableData *Read(std::istream &istrm,
const FstReadOptions &opts) {
// NB: Using `new` to access private constructor.
auto data = fst::WrapUnique(new LabelReachableData());
ReadType(istrm, &data->reach_input_);
ReadType(istrm, &data->keep_relabel_data_);
data->have_relabel_data_ = data->keep_relabel_data_;
if (data->keep_relabel_data_) ReadType(istrm, &data->label2index_);
ReadType(istrm, &data->final_label_);
ReadType(istrm, &data->interval_sets_);
return data.release();
}
bool Write(std::ostream &ostrm, const FstWriteOptions &opts) const {
WriteType(ostrm, reach_input_);
WriteType(ostrm, keep_relabel_data_);
if (keep_relabel_data_) WriteType(ostrm, label2index_);
WriteType(ostrm, FinalLabel());
WriteType(ostrm, interval_sets_);
return true;
}
private:
LabelReachableData() = default;
bool reach_input_; // Input labels considered?
bool keep_relabel_data_; // Save label2index_ to file?
bool have_relabel_data_; // Using label2index_?
Label final_label_; // Final label.
std::unordered_map<Label, Label> label2index_; // Finds index for a label.
std::vector<LabelIntervalSet> interval_sets_; // Interval sets per state.
};
// Apply a new state order to a vector of LabelIntervalSets. order[i] gives
// the StateId after sorting that corresponds to the StateId i before
// sorting; it must therefore be a permutation of the input FST's StateId
// sequence.
template <typename Label, typename StateId>
bool StateSort(std::vector<IntervalSet<Label>> *interval_sets,
const std::vector<StateId> &order) {
if (order.size() != interval_sets->size()) {
FSTERROR() << "StateSort: Bad order vector size: " << order.size()
<< ", expected: " << interval_sets->size();
return false;
}
std::vector<IntervalSet<Label>> reordered_interval_sets(
interval_sets->size());
// TODO(jrosenstock): Use storage-efficient cycle-following algorithm
// from StateSort(MutableFst *, order).
for (StateId s = 0; s < order.size(); ++s) {
reordered_interval_sets[order[s]] = std::move((*interval_sets)[s]);
}
*interval_sets = std::move(reordered_interval_sets);
return true;
}
// Apply a new state order to LabelReachableData.
template <typename Label, typename StateId>
bool StateSort(LabelReachableData<Label> *data,
const std::vector<StateId> &order) {
return StateSort(data->MutableIntervalSets(), order);
}
// Functor to find the LowerBound of a Label using an ArcIterator.
// Used by LabelReachable. Other, more efficient implementations of
// this interface specialized to certain FST types may be used instead.
template <class Arc>
class LabelLowerBound {
public:
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
// Initializes with the FST that will later supply the ArcIterator for
// `operator()`. `reach_input` specified whether `operator()` will search
// input or output labels. If `is_copy == true`, then `fst` is a copy
// of the one previously passed to `Init`, so any expensive initialization
// can be skipped.
template <class FST>
void Init(const FST &fst, bool reach_input, bool is_copy) {
reach_input_ = reach_input;
}
// Sets state that will be searched by `operator()`.
void SetState(StateId aiter_s) {}
// Positions `aiter` at the first Arc with `label >= match_label` in the
// half-open interval `[aiter_begin, aiter_end)`. Returns the position
// of `aiter`. `aiter` must be an iterator of the FST that was passed to
// `Init`.
template <class ArcIterator>
ssize_t operator()(ArcIterator *aiter, ssize_t aiter_begin, ssize_t aiter_end,
Label match_label) const {
// Only needs to compute the ilabel or olabel of arcs when performing the
// binary search.
aiter->SetFlags(reach_input_ ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
ssize_t low = aiter_begin;
ssize_t high = aiter_end;
while (low < high) {
const ssize_t mid = low + (high - low) / 2;
aiter->Seek(mid);
auto label = reach_input_ ? aiter->Value().ilabel : aiter->Value().olabel;
if (label < match_label) {
low = mid + 1;
} else {
high = mid;
}
}
aiter->Seek(low);
aiter->SetFlags(kArcValueFlags, kArcValueFlags);
return low;
}
private:
bool reach_input_ = false;
};
// Tests reachability of labels from a given state. If reach_input is true, then
// input labels are considered, o.w. output labels are considered. To test for
// reachability from a state s, first do SetState(s), then a label l can be
// reached from state s of FST f iff Reach(r) is true where r = Relabel(l). The
// relabeling is required to ensure the consecutive ones property (C1P); this
// allows a compact representation of the reachable labels. See Section 2.3.3 of
// "A Generalized Composition Algorithm for Weighted Finite-State Transducers",
// Cyril Allauzen, Michael Riley, Johan Schalkwyk, Interspeech 2009.
// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35539.pdf
// The whole FST can be relabeled instead with Relabel(&f, reach_input) so that
// the test Reach(r) applies directly to the labels of the transformed FST f.
// The relabeled FST will also be sorted appropriately for composition.
//
// Reachablity of a final state from state s (via an epsilon path) can be
// tested with ReachFinal().
//
// Reachability can also be tested on the set of labels specified by an arc
// iterator, useful for FST composition. In particular, Reach(aiter, ...) is
// true if labels on the input (output) side of the transitions of the arc
// iterator, when iter_input is true (false), can be reached from the state s.
// The iterator labels must have already been relabeled.
//
// With the arc iterator test of reachability, the begin position, end position
// and accumulated arc weight of the matches can be returned. The optional
// template argument controls how reachable arc weights are accumulated. The
// default uses semiring Plus(). Alternative ones can be used to distribute the
// weights in composition in various ways.
template <class Arc, class Accumulator = DefaultAccumulator<Arc>,
class D = LabelReachableData<typename Arc::Label>,
class LB = LabelLowerBound<Arc>>
class LabelReachable {
public:
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using Data = D;
using LowerBound = LB;
using LabelIntervalSet = typename Data::LabelIntervalSet;
using Interval = typename LabelIntervalSet::Interval;
LabelReachable(const Fst<Arc> &fst, bool reach_input,
std::unique_ptr<Accumulator> accumulator = nullptr,
bool keep_relabel_data = true)
: fst_(std::make_unique<VectorFst<Arc>>(fst)),
s_(kNoStateId),
data_(std::make_shared<Data>(reach_input, keep_relabel_data)),
accumulator_(accumulator ? std::move(accumulator)
: std::make_unique<Accumulator>()) {
const auto ins = fst_->NumStates();
TransformFst();
FindIntervals(ins);
fst_.reset();
}
explicit LabelReachable(std::shared_ptr<Data> data,
std::unique_ptr<Accumulator> accumulator = nullptr)
: s_(kNoStateId),
data_(std::move(data)),
accumulator_(accumulator ? std::move(accumulator)
: std::make_unique<Accumulator>()) {}
LabelReachable(const LabelReachable &reachable, bool safe = false)
: s_(kNoStateId),
data_(reachable.data_),
accumulator_(
std::make_unique<Accumulator>(*reachable.accumulator_, safe)),
lower_bound_(reachable.lower_bound_),
reach_fst_input_(reachable.reach_fst_input_),
error_(reachable.error_) {}
~LabelReachable() {
if (ncalls_ > 0) {
VLOG(2) << "# of calls: " << ncalls_;
VLOG(2) << "# of intervals/call: " << (nintervals_ / ncalls_);
}
}
// Relabels w.r.t labels that give compact label sets.
Label Relabel(Label label) {
if (label == 0 || error_) return label;
const auto &label2index = *data_->Label2Index();
if (auto iter = label2index.find(label); iter != label2index.end()) {
return iter->second;
}
auto &relabel = oov_label2index_[label];
if (!relabel) {
// Adds new label.
relabel = label2index.size() + oov_label2index_.size() + 1;
}
return relabel;
}
// Relabels FST w.r.t to labels that give compact label sets.
void Relabel(MutableFst<Arc> *fst, bool relabel_input) {
for (StateIterator<MutableFst<Arc>> siter(*fst); !siter.Done();
siter.Next()) {
for (MutableArcIterator<MutableFst<Arc>> aiter(fst, siter.Value());
!aiter.Done(); aiter.Next()) {
auto arc = aiter.Value();
if (relabel_input) {
arc.ilabel = Relabel(arc.ilabel);
} else {
arc.olabel = Relabel(arc.olabel);
}
aiter.SetValue(arc);
}
}
if (relabel_input) {
ArcSort(fst, ILabelCompare<Arc>());
fst->SetInputSymbols(nullptr);
} else {
ArcSort(fst, OLabelCompare<Arc>());
fst->SetOutputSymbols(nullptr);
}
}
// Returns relabeling pairs (cf. relabel.h::Relabel()). If avoid_collisions is
// true, extra pairs are added to ensure no collisions when relabeling
// automata that have labels unseen here.
void RelabelPairs(std::vector<std::pair<Label, Label>> *pairs,
bool avoid_collisions = false) {
pairs->clear();
const auto &label2index = *data_->Label2Index();
// Maps labels to their new values in [1, label2index().size()].
for (const auto &kv : label2index) {
if (kv.second != data_->FinalLabel()) {
pairs->emplace_back(kv);
}
}
// Maps oov labels to their values > label2index().size().
pairs->insert(pairs->end(), oov_label2index_.begin(),
oov_label2index_.end());
if (avoid_collisions) {
// Ensures any label in [1, label2index().size()] is mapped either
// by the above steps or to label2index() + 1 (to avoid collisions).
for (size_t i = 1; i <= label2index.size(); ++i) {
const auto it = label2index.find(i);
bool unmapped = it == label2index.end();
if (unmapped) unmapped = oov_label2index_.count(i) == 0;
if (unmapped || it->second == data_->FinalLabel()) {
pairs->emplace_back(i, label2index.size() + 1);
}
}
}
}
// Set current state. Optionally set state associated
// with arc iterator to be passed to Reach.
void SetState(StateId s, StateId aiter_s = kNoStateId) {
s_ = s;
if (aiter_s != kNoStateId) {
accumulator_->SetState(aiter_s);
if (accumulator_->Error()) error_ = true;
lower_bound_.SetState(aiter_s);
}
}
// Can reach this label from current state?
// Original labels must be transformed by the Relabel methods above.
bool Reach(Label label) const {
if (label == 0 || error_) return false;
return data_->GetIntervalSet(s_).Member(label);
}
// Can reach final state (via epsilon transitions) from this state?
bool ReachFinal() const {
if (error_) return false;
return data_->GetIntervalSet(s_).Member(data_->FinalLabel());
}
// Initialize with secondary FST to be used with Reach(Iterator,...).
// If reach_input = true, then arc input labels are considered in
// Reach(aiter, ...), o.w. output labels are considered. If copy is true, then
// the FST is a copy of the FST used in the previous call to this method
// (useful to avoid unnecessary updates).
template <class FST>
void ReachInit(const FST &fst, bool reach_input, bool copy = false) {
reach_fst_input_ = reach_input;
if (!fst.Properties(reach_fst_input_ ? kILabelSorted : kOLabelSorted,
true)) {
FSTERROR() << "LabelReachable::ReachInit: Fst is not sorted";
error_ = true;
}
accumulator_->Init(fst, copy);
if (accumulator_->Error()) error_ = true;
lower_bound_.Init(fst, /*reach_input=*/reach_input, /*is_copy=*/copy);
}
// Can reach any arc iterator label between iterator positions
// aiter_begin and aiter_end?
// Arc iterator labels must be transformed by the Relabel methods
// above. If compute_weight is true, user may call ReachWeight().
template <class Iterator>
bool Reach(Iterator *aiter, ssize_t aiter_begin, ssize_t aiter_end,
bool compute_weight) {
if (error_) return false;
const auto &interval_set = data_->GetIntervalSet(s_);
++ncalls_;
nintervals_ += interval_set.Size();
reach_begin_ = -1;
reach_end_ = -1;
reach_weight_ = Weight::Zero();
const auto flags = aiter->Flags(); // Save flags to restore them on exit.
aiter->SetFlags(kArcNoCache, kArcNoCache); // Makes caching optional.
aiter->Seek(aiter_begin);
if (2 * (aiter_end - aiter_begin) < interval_set.Size()) {
// Checks each arc against intervals, setting arc iterator flags to only
// compute the ilabel or olabel values, since they are the only values
// required for most of the arcs processed.
aiter->SetFlags(reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
Label reach_label = kNoLabel;
for (auto aiter_pos = aiter_begin; aiter_pos < aiter_end;
aiter->Next(), ++aiter_pos) {
const auto &arc = aiter->Value();
const auto label = reach_fst_input_ ? arc.ilabel : arc.olabel;
if (label == reach_label || Reach(label)) {
reach_label = label;
if (reach_begin_ < 0) reach_begin_ = aiter_pos;
reach_end_ = aiter_pos + 1;
if (compute_weight) {
if (!(aiter->Flags() & kArcWeightValue)) {
// If arc.weight wasn't computed by the call to aiter->Value()
// above, we need to call aiter->Value() again after having set
// the arc iterator flags to compute the arc weight value.
aiter->SetFlags(kArcWeightValue, kArcValueFlags);
const auto &arcb = aiter->Value();
// Call the accumulator.
reach_weight_ = accumulator_->Sum(reach_weight_, arcb.weight);
// Only ilabel or olabel required to process the following arcs.
aiter->SetFlags(
reach_fst_input_ ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
} else {
// Calls the accumulator.
reach_weight_ = accumulator_->Sum(reach_weight_, arc.weight);
}
}
}
}
} else {
// Checks each interval against arcs.
auto begin_low = aiter_begin;
auto end_low = aiter_begin;
for (const auto &interval : interval_set) {
begin_low = lower_bound_(aiter, end_low, aiter_end, interval.begin);
end_low = lower_bound_(aiter, begin_low, aiter_end, interval.end);
if (end_low - begin_low > 0) {
if (reach_begin_ < 0) reach_begin_ = begin_low;
reach_end_ = end_low;
if (compute_weight) {
aiter->SetFlags(kArcWeightValue, kArcValueFlags);
reach_weight_ =
accumulator_->Sum(reach_weight_, aiter, begin_low, end_low);
}
}
}
}
aiter->SetFlags(flags, kArcFlags); // Restores original flag values.
return reach_begin_ >= 0;
}
// Returns iterator position of first matching arc.
ssize_t ReachBegin() const { return reach_begin_; }
// Returns iterator position one past last matching arc.
ssize_t ReachEnd() const { return reach_end_; }
// Return the sum of the weights for matching arcs. Valid only if
// compute_weight was true in Reach() call.
Weight ReachWeight() const { return reach_weight_; }
// Access to the relabeling map. Excludes epsilon (0) label but
// includes kNoLabel that is used internally for super-final
// transitions.
const std::unordered_map<Label, Label> &Label2Index() const {
return *data_->Label2Index();
}
const Data *GetData() const { return data_.get(); }
std::shared_ptr<Data> GetSharedData() const { return data_; }
bool Error() const { return error_ || accumulator_->Error(); }
private:
// Redirects labeled arcs (input or output labels determined by ReachInput())
// to new label-specific final states. Each original final state is
// redirected via a transition labeled with kNoLabel to a new
// kNoLabel-specific final state. Creates super-initial state for all states
// with zero in-degree.
void TransformFst() {
auto ins = fst_->NumStates();
auto ons = ins;
std::vector<ssize_t> indeg(ins, 0);
// Redirects labeled arcs to new final states.
for (StateId s = 0; s < ins; ++s) {
for (MutableArcIterator<VectorFst<Arc>> aiter(fst_.get(), s);
!aiter.Done(); aiter.Next()) {
auto arc = aiter.Value();
const auto label = data_->ReachInput() ? arc.ilabel : arc.olabel;
if (label) {
if (auto insert_result = label2state_.emplace(label, ons);
insert_result.second) {
indeg.push_back(0);
++ons;
}
arc.nextstate = label2state_[label];
aiter.SetValue(arc);
}
++indeg[arc.nextstate]; // Finds in-degrees for next step.
}
// Redirects final weights to new final state.
auto final_weight = fst_->Final(s);
if (final_weight != Weight::Zero()) {
if (auto insert_result = label2state_.emplace(kNoLabel, ons);
insert_result.second) {
indeg.push_back(0);
++ons;
}
const auto nextstate = label2state_[kNoLabel];
fst_->EmplaceArc(s, kNoLabel, kNoLabel, std::move(final_weight),
nextstate);
++indeg[nextstate]; // Finds in-degrees for next step.
fst_->SetFinal(s, Weight::Zero());
}
}
// Adds new final states to the FST.
while (fst_->NumStates() < ons) {
StateId s = fst_->AddState();
fst_->SetFinal(s);
}
// Creates a super-initial state for all states with zero in-degree.
const auto start = fst_->AddState();
fst_->SetStart(start);
for (StateId s = 0; s < start; ++s) {
if (indeg[s] == 0) fst_->EmplaceArc(start, 0, 0, s);
}
}
void FindIntervals(StateId ins) {
StateReachable<Arc, Label, LabelIntervalSet> state_reachable(*fst_);
if (state_reachable.Error()) {
error_ = true;
return;
}
auto &state2index = state_reachable.State2Index();
auto &interval_sets = *data_->MutableIntervalSets();
interval_sets = state_reachable.IntervalSets();
interval_sets.resize(ins);
auto &label2index = *data_->MutableLabel2Index();
for (const auto &kv : label2state_) {
Label i = state2index[kv.second];
label2index[kv.first] = i;
if (kv.first == kNoLabel) data_->SetFinalLabel(i);
}
label2state_.clear();
double nintervals = 0;
ssize_t non_intervals = 0;
for (StateId s = 0; s < ins; ++s) {
nintervals += interval_sets[s].Size();
if (interval_sets[s].Size() > 1) {
++non_intervals;
VLOG(3) << "state: " << s
<< " # of intervals: " << interval_sets[s].Size();
}
}
VLOG(2) << "# of states: " << ins;
VLOG(2) << "# of intervals: " << nintervals;
VLOG(2) << "# of intervals/state: " << nintervals / ins;
VLOG(2) << "# of non-interval states: " << non_intervals;
}
std::unique_ptr<VectorFst<Arc>> fst_;
// Current state
StateId s_;
// Finds final state for a label
std::unordered_map<Label, StateId> label2state_;
// Iterator position of first match.
ssize_t reach_begin_;
// Iterator position after last match.
ssize_t reach_end_;
// Gives weight sum of arc iterator arcs with reachable labels.
Weight reach_weight_;
// Shareable data between copies.
std::shared_ptr<Data> data_;
// Sums arc weights.
std::unique_ptr<Accumulator> accumulator_;
// Functor for computing LowerBound(Iterator*, begin, end, label).
LowerBound lower_bound_;
// Relabeling map for OOV labels.
std::unordered_map<Label, Label> oov_label2index_;
double ncalls_ = 0;
double nintervals_ = 0;
bool reach_fst_input_ = false;
bool error_ = false;
};
} // namespace fst
#endif // FST_LABEL_REACHABLE_H_