You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1582 lines
51 KiB

// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Classes to allow matching labels leaving FST states.
#ifndef FST_MATCHER_H_
#define FST_MATCHER_H_
#include <sys/types.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <optional>
#include <tuple>
#include <unordered_map>
#include <utility>
#include <fst/log.h>
#include <fst/fst.h>
#include <fst/mutable-fst.h> // for all internal FST accessors.
#include <fst/properties.h>
#include <fst/util.h>
#include <unordered_map>
#include <optional>
namespace fst {
// Matchers find and iterate through requested labels at FST states. In the
// simplest form, these are just some associative map or search keyed on labels.
// More generally, they may implement matching special labels that represent
// sets of labels such as sigma (all), rho (rest), or phi (fail). The Matcher
// interface is:
//
// template <class F>
// class Matcher {
// public:
// using FST = F;
// using Arc = typename FST::Arc;
// using Label = typename Arc::Label;
// using StateId = typename Arc::StateId;
// using Weight = typename Arc::Weight;
//
// // Required constructors. Note:
// // -- the constructors that copy the FST arg are useful for
// // letting the matcher manage the FST through copies
// // (esp with 'safe' copies); e.g. ComposeFst depends on this.
// // -- the constructor that does not copy is useful when the
// // the FST is mutated during the lifetime of the matcher
// // (o.w. the matcher would have its own unmutated deep copy).
//
// // This makes a copy of the FST.
// Matcher(const FST &fst, MatchType type);
// // This doesn't copy the FST.
// Matcher(const FST *fst, MatchType type);
// // This makes a copy of the FST.
// // See Copy() below.
// Matcher(const Matcher &matcher, bool safe = false);
//
// // If safe = true, the copy is thread-safe. See Fst<>::Copy() for
// // further doc.
// Matcher *Copy(bool safe = false) const override;
//
// // Returns the match type that can be provided (depending on compatibility
// // of the input FST). It is either the requested match type, MATCH_NONE,
// // or MATCH_UNKNOWN. If test is false, a costly testing is avoided, but
// // MATCH_UNKNOWN may be returned. If test is true, a definite answer is
// // returned, but may involve more costly computation (e.g., visiting
// // the FST).
// // MatchType Type(bool test) const override;
//
// // Specifies the current state.
// void SetState(StateId s) final;
//
// // Finds matches to a label at the current state, returning true if a match
// // found. kNoLabel matches any non-consuming transitions, e.g., epsilon
// // transitions, which do not require a matching symbol.
// bool Find(Label label) final;
//
// // Iterator methods. Note that initially and after SetState() these have
// // undefined behavior until Find() is called.
//
// bool Done() const final;
//
// const Arc &Value() const final;
//
// void Next() final;
//
// // Returns final weight of a state.
// Weight Final(StateId) const final;
//
// // Indicates preference for being the side used for matching in
// // composition. If the value is kRequirePriority, then it is
// // mandatory that it be used. Calling this method without passing the
// // current state of the matcher invalidates the state of the matcher.
// ssize_t Priority(StateId s) final;
//
// // This specifies the known FST properties as viewed from this matcher. It
// // takes as argument the input FST's known properties.
// uint64_t Properties(uint64_t props) const override;
//
// // Returns matcher flags.
// uint32_t Flags() const override;
//
// // Returns matcher FST.
// const FST &GetFst() const override;
// };
// Basic matcher flags.
// Matcher needs to be used as the matching side in composition for
// at least one state (has kRequirePriority).
inline constexpr uint32_t kRequireMatch = 0x00000001;
// Flags used for basic matchers (see also lookahead.h).
inline constexpr uint32_t kMatcherFlags = kRequireMatch;
// Matcher priority that is mandatory.
inline constexpr ssize_t kRequirePriority = -1;
// Matcher interface, templated on the Arc definition; used for matcher
// specializations that are returned by the InitMatcher FST method.
template <class A>
class MatcherBase {
public:
using Arc = A;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
virtual ~MatcherBase() = default;
// Virtual interface.
virtual MatcherBase *Copy(bool safe = false) const = 0;
virtual MatchType Type(bool) const = 0;
virtual void SetState(StateId) = 0;
virtual bool Find(Label) = 0;
virtual bool Done() const = 0;
virtual const Arc &Value() const = 0;
virtual void Next() = 0;
virtual const Fst<Arc> &GetFst() const = 0;
virtual uint64_t Properties(uint64_t) const = 0;
// Trivial implementations that can be used by derived classes. Full
// devirtualization is expected for any derived class marked final.
virtual uint32_t Flags() const { return 0; }
virtual Weight Final(StateId s) const { return internal::Final(GetFst(), s); }
virtual ssize_t Priority(StateId s) { return internal::NumArcs(GetFst(), s); }
};
// A matcher that expects sorted labels on the side to be matched.
// If match_type == MATCH_INPUT, epsilons match the implicit self-loop
// Arc(kNoLabel, 0, Weight::One(), current_state) as well as any
// actual epsilon transitions. If match_type == MATCH_OUTPUT, then
// Arc(0, kNoLabel, Weight::One(), current_state) is instead matched.
template <class F>
class SortedMatcher : public MatcherBase<typename F::Arc> {
public:
using FST = F;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using MatcherBase<Arc>::Flags;
using MatcherBase<Arc>::Properties;
// Labels >= binary_label will be searched for by binary search;
// o.w. linear search is used.
// This makes a copy of the FST.
SortedMatcher(const FST &fst, MatchType match_type, Label binary_label = 1)
: SortedMatcher(fst.Copy(), match_type, binary_label) {
owned_fst_.reset(&fst_);
}
// Labels >= binary_label will be searched for by binary search;
// o.w. linear search is used.
// This doesn't copy the FST.
SortedMatcher(const FST *fst, MatchType match_type, Label binary_label = 1)
: fst_(*fst),
state_(kNoStateId),
aiter_(std::nullopt),
match_type_(match_type),
binary_label_(binary_label),
match_label_(kNoLabel),
narcs_(0),
loop_(kNoLabel, 0, Weight::One(), kNoStateId),
error_(false) {
switch (match_type_) {
case MATCH_INPUT:
case MATCH_NONE:
break;
case MATCH_OUTPUT:
std::swap(loop_.ilabel, loop_.olabel);
break;
default:
FSTERROR() << "SortedMatcher: Bad match type";
match_type_ = MATCH_NONE;
error_ = true;
}
}
// This makes a copy of the FST.
SortedMatcher(const SortedMatcher &matcher, bool safe = false)
: owned_fst_(matcher.fst_.Copy(safe)),
fst_(*owned_fst_),
state_(kNoStateId),
aiter_(std::nullopt),
match_type_(matcher.match_type_),
binary_label_(matcher.binary_label_),
match_label_(kNoLabel),
narcs_(0),
loop_(matcher.loop_),
error_(matcher.error_) {}
~SortedMatcher() override = default;
SortedMatcher *Copy(bool safe = false) const override {
return new SortedMatcher(*this, safe);
}
MatchType Type(bool test) const override {
if (match_type_ == MATCH_NONE) return match_type_;
const auto true_prop =
match_type_ == MATCH_INPUT ? kILabelSorted : kOLabelSorted;
const auto false_prop =
match_type_ == MATCH_INPUT ? kNotILabelSorted : kNotOLabelSorted;
const auto props = fst_.Properties(true_prop | false_prop, test);
if (props & true_prop) {
return match_type_;
} else if (props & false_prop) {
return MATCH_NONE;
} else {
return MATCH_UNKNOWN;
}
}
void SetState(StateId s) final {
if (state_ == s) return;
state_ = s;
if (match_type_ == MATCH_NONE) {
FSTERROR() << "SortedMatcher: Bad match type";
error_ = true;
}
aiter_.emplace(fst_, s);
aiter_->SetFlags(kArcNoCache, kArcNoCache);
narcs_ = internal::NumArcs(fst_, s);
loop_.nextstate = s;
}
bool Find(Label match_label) final {
exact_match_ = true;
if (error_) {
current_loop_ = false;
match_label_ = kNoLabel;
return false;
}
current_loop_ = match_label == 0;
match_label_ = match_label == kNoLabel ? 0 : match_label;
if (Search()) {
return true;
} else {
return current_loop_;
}
}
// Positions matcher to the first position where inserting match_label would
// maintain the sort order.
void LowerBound(Label label) {
exact_match_ = false;
current_loop_ = false;
if (error_) {
match_label_ = kNoLabel;
return;
}
match_label_ = label;
Search();
}
// After Find(), returns false if no more exact matches.
// After LowerBound(), returns false if no more arcs.
bool Done() const final {
if (current_loop_) return false;
if (aiter_->Done()) return true;
if (!exact_match_) return false;
aiter_->SetFlags(
match_type_ == MATCH_INPUT ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
return GetLabel() != match_label_;
}
const Arc &Value() const final {
if (current_loop_) return loop_;
aiter_->SetFlags(kArcValueFlags, kArcValueFlags);
return aiter_->Value();
}
void Next() final {
if (current_loop_) {
current_loop_ = false;
} else {
aiter_->Next();
}
}
Weight Final(StateId s) const final { return MatcherBase<Arc>::Final(s); }
ssize_t Priority(StateId s) final { return MatcherBase<Arc>::Priority(s); }
const FST &GetFst() const override { return fst_; }
uint64_t Properties(uint64_t inprops) const override {
return inprops | (error_ ? kError : 0);
}
size_t Position() const { return aiter_ ? aiter_->Position() : 0; }
private:
Label GetLabel() const {
const auto &arc = aiter_->Value();
return match_type_ == MATCH_INPUT ? arc.ilabel : arc.olabel;
}
bool BinarySearch();
bool LinearSearch();
bool Search();
std::unique_ptr<const FST> owned_fst_; // FST ptr if owned.
const FST &fst_; // FST for matching.
StateId state_; // Matcher state.
mutable std::optional<ArcIterator<FST>>
aiter_; // Iterator for current state.
MatchType match_type_; // Type of match to perform.
Label binary_label_; // Least label for binary search.
Label match_label_; // Current label to be matched.
size_t narcs_; // Current state arc count.
Arc loop_; // For non-consuming symbols.
bool current_loop_; // Current arc is the implicit loop.
bool exact_match_; // Exact match or lower bound?
bool error_; // Error encountered?
};
// Returns true iff match to match_label_. The arc iterator is positioned at the
// lower bound, that is, the first element greater than or equal to
// match_label_, or the end if all elements are less than match_label_.
// If multiple elements are equal to the `match_label_`, returns the rightmost
// one.
template <class FST>
inline bool SortedMatcher<FST>::BinarySearch() {
size_t size = narcs_;
if (size == 0) {
return false;
}
size_t high = size - 1;
while (size > 1) {
const size_t half = size / 2;
const size_t mid = high - half;
aiter_->Seek(mid);
if (GetLabel() >= match_label_) {
high = mid;
}
size -= half;
}
aiter_->Seek(high);
const auto label = GetLabel();
if (label == match_label_) {
return true;
}
if (label < match_label_) {
aiter_->Next();
}
return false;
}
// Returns true iff match to match_label_, positioning arc iterator at lower
// bound.
template <class FST>
inline bool SortedMatcher<FST>::LinearSearch() {
for (aiter_->Reset(); !aiter_->Done(); aiter_->Next()) {
const auto label = GetLabel();
if (label == match_label_) return true;
if (label > match_label_) break;
}
return false;
}
// Returns true iff match to match_label_, positioning arc iterator at lower
// bound.
template <class FST>
inline bool SortedMatcher<FST>::Search() {
aiter_->SetFlags(
match_type_ == MATCH_INPUT ? kArcILabelValue : kArcOLabelValue,
kArcValueFlags);
if (match_label_ >= binary_label_) {
return BinarySearch();
} else {
return LinearSearch();
}
}
// A matcher that stores labels in a per-state hash table populated upon the
// first visit to that state. Sorting is not required. Treatment of
// epsilons are the same as with SortedMatcher.
template <class F>
class HashMatcher : public MatcherBase<typename F::Arc> {
public:
using FST = F;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using MatcherBase<Arc>::Flags;
using MatcherBase<Arc>::Final;
using MatcherBase<Arc>::Priority;
// This makes a copy of the FST.
HashMatcher(const FST &fst, MatchType match_type)
: HashMatcher(fst.Copy(), match_type) {
owned_fst_.reset(&fst_);
}
// This doesn't copy the FST.
HashMatcher(const FST *fst, MatchType match_type)
: fst_(*fst),
state_(kNoStateId),
match_type_(match_type),
loop_(kNoLabel, 0, Weight::One(), kNoStateId),
error_(false),
state_table_(std::make_shared<StateTable>()) {
switch (match_type_) {
case MATCH_INPUT:
case MATCH_NONE:
break;
case MATCH_OUTPUT:
std::swap(loop_.ilabel, loop_.olabel);
break;
default:
FSTERROR() << "HashMatcher: Bad match type";
match_type_ = MATCH_NONE;
error_ = true;
}
}
// This makes a copy of the FST.
HashMatcher(const HashMatcher &matcher, bool safe = false)
: owned_fst_(matcher.fst_.Copy(safe)),
fst_(*owned_fst_),
state_(kNoStateId),
match_type_(matcher.match_type_),
loop_(matcher.loop_),
error_(matcher.error_),
state_table_(safe ? std::make_shared<StateTable>()
: matcher.state_table_) {}
HashMatcher *Copy(bool safe = false) const override {
return new HashMatcher(*this, safe);
}
// The argument is ignored as there are no relevant properties to test.
MatchType Type(bool test) const override { return match_type_; }
void SetState(StateId s) final;
bool Find(Label label) final {
current_loop_ = label == 0;
if (label == 0) {
Search(label);
return true;
}
if (label == kNoLabel) label = 0;
return Search(label);
}
bool Done() const final {
if (current_loop_) return false;
return label_it_ == label_end_;
}
const Arc &Value() const final {
if (current_loop_) return loop_;
aiter_->Seek(label_it_->second);
return aiter_->Value();
}
void Next() final {
if (current_loop_) {
current_loop_ = false;
} else {
++label_it_;
}
}
const FST &GetFst() const override { return fst_; }
uint64_t Properties(uint64_t inprops) const override {
return inprops | (error_ ? kError : 0);
}
private:
Label GetLabel() const {
const auto &arc = aiter_->Value();
return match_type_ == MATCH_INPUT ? arc.ilabel : arc.olabel;
}
bool Search(Label match_label);
using LabelTable = std::unordered_multimap<Label, size_t>;
using StateTable = std::unordered_map<StateId, std::unique_ptr<LabelTable>>;
std::unique_ptr<const FST> owned_fst_; // ptr to FST if owned.
const FST &fst_; // FST for matching.
StateId state_; // Matcher state.
MatchType match_type_;
Arc loop_; // The implicit loop itself.
bool current_loop_; // Is the current arc the implicit loop?
bool error_; // Error encountered?
std::unique_ptr<ArcIterator<FST>> aiter_;
std::shared_ptr<StateTable> state_table_; // Table from state to label table.
LabelTable *label_table_; // Pointer to current state's label table.
typename LabelTable::iterator label_it_; // Position for label.
typename LabelTable::iterator label_end_; // Position for last label + 1.
};
template <class FST>
void HashMatcher<FST>::SetState(typename FST::Arc::StateId s) {
if (state_ == s) return;
// Resets everything for the state.
state_ = s;
loop_.nextstate = state_;
aiter_ = std::make_unique<ArcIterator<FST>>(fst_, state_);
if (match_type_ == MATCH_NONE) {
FSTERROR() << "HashMatcher: Bad match type";
error_ = true;
}
// Attempts to insert a new label table.
const auto &[it, success] =
state_table_->emplace(state_, std::make_unique<LabelTable>());
// Sets instance's pointer to the label table for this state.
label_table_ = it->second.get();
// If it already exists, no additional work is done and we simply return.
if (!success) return;
// Otherwise, populate this new table.
// Populates the label table.
label_table_->reserve(internal::NumArcs(fst_, state_));
const auto aiter_flags =
(match_type_ == MATCH_INPUT ? kArcILabelValue : kArcOLabelValue) |
kArcNoCache;
aiter_->SetFlags(aiter_flags, kArcFlags);
for (; !aiter_->Done(); aiter_->Next()) {
label_table_->emplace(GetLabel(), aiter_->Position());
}
aiter_->SetFlags(kArcValueFlags, kArcValueFlags);
}
template <class FST>
inline bool HashMatcher<FST>::Search(typename FST::Arc::Label match_label) {
std::tie(label_it_, label_end_) = label_table_->equal_range(match_label);
if (label_it_ == label_end_) return false;
aiter_->Seek(label_it_->second);
return true;
}
// Specifies whether we rewrite both the input and output sides during matching.
enum MatcherRewriteMode {
MATCHER_REWRITE_AUTO = 0, // Rewrites both sides iff acceptor.
MATCHER_REWRITE_ALWAYS,
MATCHER_REWRITE_NEVER
};
// For any requested label that doesn't match at a state, this matcher
// considers the *unique* transition that matches the label 'phi_label'
// (phi = 'fail'), and recursively looks for a match at its
// destination. When 'phi_loop' is true, if no match is found but a
// phi self-loop is found, then the phi transition found is returned
// with the phi_label rewritten as the requested label (both sides if
// an acceptor, or if 'rewrite_both' is true and both input and output
// labels of the found transition are 'phi_label'). If 'phi_label' is
// kNoLabel, this special matching is not done. PhiMatcher is
// templated itself on a matcher, which is used to perform the
// underlying matching. By default, the underlying matcher is
// constructed by PhiMatcher. The user can instead pass in this
// object; in that case, PhiMatcher takes its ownership.
// Phi non-determinism not supported. No non-consuming symbols other
// than epsilon supported with the underlying template argument matcher.
template <class M>
class PhiMatcher : public MatcherBase<typename M::Arc> {
public:
using FST = typename M::FST;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// This makes a copy of the FST (w/o 'matcher' arg).
PhiMatcher(const FST &fst, MatchType match_type, Label phi_label = kNoLabel,
bool phi_loop = true,
MatcherRewriteMode rewrite_mode = MATCHER_REWRITE_AUTO,
M *matcher = nullptr)
: matcher_(matcher ? matcher : new M(fst, match_type)),
match_type_(match_type),
phi_label_(phi_label),
state_(kNoStateId),
phi_loop_(phi_loop),
error_(false) {
if (match_type == MATCH_BOTH) {
FSTERROR() << "PhiMatcher: Bad match type";
match_type_ = MATCH_NONE;
error_ = true;
}
if (rewrite_mode == MATCHER_REWRITE_AUTO) {
rewrite_both_ = fst.Properties(kAcceptor, true);
} else if (rewrite_mode == MATCHER_REWRITE_ALWAYS) {
rewrite_both_ = true;
} else {
rewrite_both_ = false;
}
}
// This doesn't copy the FST.
PhiMatcher(const FST *fst, MatchType match_type, Label phi_label = kNoLabel,
bool phi_loop = true,
MatcherRewriteMode rewrite_mode = MATCHER_REWRITE_AUTO,
M *matcher = nullptr)
: PhiMatcher(*fst, match_type, phi_label, phi_loop, rewrite_mode,
matcher ? matcher : new M(fst, match_type)) {}
// This makes a copy of the FST.
PhiMatcher(const PhiMatcher &matcher, bool safe = false)
: matcher_(new M(*matcher.matcher_, safe)),
match_type_(matcher.match_type_),
phi_label_(matcher.phi_label_),
rewrite_both_(matcher.rewrite_both_),
state_(kNoStateId),
phi_loop_(matcher.phi_loop_),
error_(matcher.error_) {}
PhiMatcher *Copy(bool safe = false) const override {
return new PhiMatcher(*this, safe);
}
MatchType Type(bool test) const override { return matcher_->Type(test); }
void SetState(StateId s) final {
if (state_ == s) return;
matcher_->SetState(s);
state_ = s;
has_phi_ = phi_label_ != kNoLabel;
}
bool Find(Label match_label) final;
bool Done() const final { return matcher_->Done(); }
const Arc &Value() const final {
if ((phi_match_ == kNoLabel) && (phi_weight_ == Weight::One())) {
return matcher_->Value();
} else if (phi_match_ == 0) { // Virtual epsilon loop.
phi_arc_ = Arc(kNoLabel, 0, Weight::One(), state_);
if (match_type_ == MATCH_OUTPUT) {
std::swap(phi_arc_.ilabel, phi_arc_.olabel);
}
return phi_arc_;
} else {
phi_arc_ = matcher_->Value();
phi_arc_.weight = Times(phi_weight_, phi_arc_.weight);
if (phi_match_ != kNoLabel) { // Phi loop match.
if (rewrite_both_) {
if (phi_arc_.ilabel == phi_label_) phi_arc_.ilabel = phi_match_;
if (phi_arc_.olabel == phi_label_) phi_arc_.olabel = phi_match_;
} else if (match_type_ == MATCH_INPUT) {
phi_arc_.ilabel = phi_match_;
} else {
phi_arc_.olabel = phi_match_;
}
}
return phi_arc_;
}
}
void Next() final { matcher_->Next(); }
Weight Final(StateId s) const final {
auto weight = matcher_->Final(s);
if (phi_label_ == kNoLabel || weight != Weight::Zero()) {
return weight;
}
weight = Weight::One();
matcher_->SetState(s);
while (matcher_->Final(s) == Weight::Zero()) {
if (!matcher_->Find(phi_label_ == 0 ? -1 : phi_label_)) break;
weight = Times(weight, matcher_->Value().weight);
if (s == matcher_->Value().nextstate) {
return Weight::Zero(); // Does not follow phi self-loops.
}
s = matcher_->Value().nextstate;
matcher_->SetState(s);
}
weight = Times(weight, matcher_->Final(s));
return weight;
}
ssize_t Priority(StateId s) final {
if (phi_label_ != kNoLabel) {
matcher_->SetState(s);
const bool has_phi = matcher_->Find(phi_label_ == 0 ? -1 : phi_label_);
return has_phi ? kRequirePriority : matcher_->Priority(s);
} else {
return matcher_->Priority(s);
}
}
const FST &GetFst() const override { return matcher_->GetFst(); }
uint64_t Properties(uint64_t props) const override;
uint32_t Flags() const override {
if (phi_label_ == kNoLabel || match_type_ == MATCH_NONE) {
return matcher_->Flags();
}
return matcher_->Flags() | kRequireMatch;
}
Label PhiLabel() const { return phi_label_; }
private:
mutable std::unique_ptr<M> matcher_;
MatchType match_type_; // Type of match requested.
Label phi_label_; // Label that represents the phi transition.
bool rewrite_both_; // Rewrite both sides when both are phi_label_?
bool has_phi_; // Are there possibly phis at the current state?
Label phi_match_; // Current label that matches phi loop.
mutable Arc phi_arc_; // Arc to return.
StateId state_; // Matcher state.
Weight phi_weight_; // Product of the weights of phi transitions taken.
bool phi_loop_; // When true, phi self-loop are allowed and treated
// as rho (required for Aho-Corasick).
bool error_; // Error encountered?
PhiMatcher &operator=(const PhiMatcher &) = delete;
};
template <class M>
inline bool PhiMatcher<M>::Find(Label label) {
if (label == phi_label_ && phi_label_ != kNoLabel && phi_label_ != 0) {
FSTERROR() << "PhiMatcher::Find: bad label (phi): " << phi_label_;
error_ = true;
return false;
}
matcher_->SetState(state_);
phi_match_ = kNoLabel;
phi_weight_ = Weight::One();
// If phi_label_ == 0, there are no more true epsilon arcs.
if (phi_label_ == 0) {
if (label == kNoLabel) {
return false;
}
if (label == 0) { // but a virtual epsilon loop needs to be returned.
if (!matcher_->Find(kNoLabel)) {
return matcher_->Find(0);
} else {
phi_match_ = 0;
return true;
}
}
}
if (!has_phi_ || label == 0 || label == kNoLabel) {
return matcher_->Find(label);
}
auto s = state_;
while (!matcher_->Find(label)) {
// Look for phi transition (if phi_label_ == 0, we need to look
// for -1 to avoid getting the virtual self-loop)
if (!matcher_->Find(phi_label_ == 0 ? -1 : phi_label_)) return false;
if (phi_loop_ && matcher_->Value().nextstate == s) {
phi_match_ = label;
return true;
}
phi_weight_ = Times(phi_weight_, matcher_->Value().weight);
s = matcher_->Value().nextstate;
matcher_->Next();
if (!matcher_->Done()) {
FSTERROR() << "PhiMatcher: Phi non-determinism not supported";
error_ = true;
}
matcher_->SetState(s);
}
return true;
}
template <class M>
inline uint64_t PhiMatcher<M>::Properties(uint64_t inprops) const {
auto outprops = matcher_->Properties(inprops);
if (error_) outprops |= kError;
if (match_type_ == MATCH_NONE) {
return outprops;
} else if (match_type_ == MATCH_INPUT) {
if (phi_label_ == 0) {
outprops &= ~(kEpsilons | kIEpsilons | kOEpsilons);
outprops |= kNoEpsilons | kNoIEpsilons;
}
if (rewrite_both_) {
return outprops &
~(kODeterministic | kNonODeterministic | kString | kILabelSorted |
kNotILabelSorted | kOLabelSorted | kNotOLabelSorted);
} else {
return outprops &
~(kODeterministic | kAcceptor | kString | kILabelSorted |
kNotILabelSorted | kOLabelSorted | kNotOLabelSorted);
}
} else if (match_type_ == MATCH_OUTPUT) {
if (phi_label_ == 0) {
outprops &= ~(kEpsilons | kIEpsilons | kOEpsilons);
outprops |= kNoEpsilons | kNoOEpsilons;
}
if (rewrite_both_) {
return outprops &
~(kIDeterministic | kNonIDeterministic | kString | kILabelSorted |
kNotILabelSorted | kOLabelSorted | kNotOLabelSorted);
} else {
return outprops &
~(kIDeterministic | kAcceptor | kString | kILabelSorted |
kNotILabelSorted | kOLabelSorted | kNotOLabelSorted);
}
} else {
// Shouldn't ever get here.
FSTERROR() << "PhiMatcher: Bad match type: " << match_type_;
return 0;
}
}
// For any requested label that doesn't match at a state, this matcher
// considers all transitions that match the label 'rho_label' (rho =
// 'rest'). Each such rho transition found is returned with the
// rho_label rewritten as the requested label (both sides if an
// acceptor, or if 'rewrite_both' is true and both input and output
// labels of the found transition are 'rho_label'). If 'rho_label' is
// kNoLabel, this special matching is not done. RhoMatcher is
// templated itself on a matcher, which is used to perform the
// underlying matching. By default, the underlying matcher is
// constructed by RhoMatcher. The user can instead pass in this
// object; in that case, RhoMatcher takes its ownership.
// No non-consuming symbols other than epsilon supported with
// the underlying template argument matcher.
template <class M>
class RhoMatcher : public MatcherBase<typename M::Arc> {
public:
using FST = typename M::FST;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// This makes a copy of the FST (w/o 'matcher' arg).
RhoMatcher(const FST &fst, MatchType match_type, Label rho_label = kNoLabel,
MatcherRewriteMode rewrite_mode = MATCHER_REWRITE_AUTO,
M *matcher = nullptr)
: matcher_(matcher ? matcher : new M(fst, match_type)),
match_type_(match_type),
rho_label_(rho_label),
error_(false),
state_(kNoStateId),
has_rho_(false) {
if (match_type == MATCH_BOTH) {
FSTERROR() << "RhoMatcher: Bad match type";
match_type_ = MATCH_NONE;
error_ = true;
}
if (rho_label == 0) {
FSTERROR() << "RhoMatcher: 0 cannot be used as rho_label";
rho_label_ = kNoLabel;
error_ = true;
}
if (rewrite_mode == MATCHER_REWRITE_AUTO) {
rewrite_both_ = fst.Properties(kAcceptor, true);
} else if (rewrite_mode == MATCHER_REWRITE_ALWAYS) {
rewrite_both_ = true;
} else {
rewrite_both_ = false;
}
}
// This doesn't copy the FST.
RhoMatcher(const FST *fst, MatchType match_type, Label rho_label = kNoLabel,
MatcherRewriteMode rewrite_mode = MATCHER_REWRITE_AUTO,
M *matcher = nullptr)
: RhoMatcher(*fst, match_type, rho_label, rewrite_mode,
matcher ? matcher : new M(fst, match_type)) {}
// This makes a copy of the FST.
RhoMatcher(const RhoMatcher &matcher, bool safe = false)
: matcher_(new M(*matcher.matcher_, safe)),
match_type_(matcher.match_type_),
rho_label_(matcher.rho_label_),
rewrite_both_(matcher.rewrite_both_),
error_(matcher.error_),
state_(kNoStateId),
has_rho_(false) {}
RhoMatcher *Copy(bool safe = false) const override {
return new RhoMatcher(*this, safe);
}
MatchType Type(bool test) const override { return matcher_->Type(test); }
void SetState(StateId s) final {
if (state_ == s) return;
state_ = s;
matcher_->SetState(s);
has_rho_ = rho_label_ != kNoLabel;
}
bool Find(Label label) final {
if (label == rho_label_ && rho_label_ != kNoLabel) {
FSTERROR() << "RhoMatcher::Find: bad label (rho)";
error_ = true;
return false;
}
if (matcher_->Find(label)) {
rho_match_ = kNoLabel;
return true;
} else if (has_rho_ && label != 0 && label != kNoLabel &&
(has_rho_ = matcher_->Find(rho_label_))) {
rho_match_ = label;
return true;
} else {
return false;
}
}
bool Done() const final { return matcher_->Done(); }
const Arc &Value() const final {
if (rho_match_ == kNoLabel) {
return matcher_->Value();
} else {
rho_arc_ = matcher_->Value();
if (rewrite_both_) {
if (rho_arc_.ilabel == rho_label_) rho_arc_.ilabel = rho_match_;
if (rho_arc_.olabel == rho_label_) rho_arc_.olabel = rho_match_;
} else if (match_type_ == MATCH_INPUT) {
rho_arc_.ilabel = rho_match_;
} else {
rho_arc_.olabel = rho_match_;
}
return rho_arc_;
}
}
void Next() final { matcher_->Next(); }
Weight Final(StateId s) const final { return matcher_->Final(s); }
ssize_t Priority(StateId s) final {
state_ = s;
matcher_->SetState(s);
has_rho_ = matcher_->Find(rho_label_);
if (has_rho_) {
return kRequirePriority;
} else {
return matcher_->Priority(s);
}
}
const FST &GetFst() const override { return matcher_->GetFst(); }
uint64_t Properties(uint64_t props) const override;
uint32_t Flags() const override {
if (rho_label_ == kNoLabel || match_type_ == MATCH_NONE) {
return matcher_->Flags();
}
return matcher_->Flags() | kRequireMatch;
}
Label RhoLabel() const { return rho_label_; }
private:
std::unique_ptr<M> matcher_;
MatchType match_type_; // Type of match requested.
Label rho_label_; // Label that represents the rho transition
bool rewrite_both_; // Rewrite both sides when both are rho_label_?
Label rho_match_; // Current label that matches rho transition.
mutable Arc rho_arc_; // Arc to return when rho match.
bool error_; // Error encountered?
StateId state_; // Matcher state.
bool has_rho_; // Are there possibly rhos at the current state?
};
template <class M>
inline uint64_t RhoMatcher<M>::Properties(uint64_t inprops) const {
auto outprops = matcher_->Properties(inprops);
if (error_) outprops |= kError;
if (match_type_ == MATCH_NONE) {
return outprops;
} else if (match_type_ == MATCH_INPUT) {
if (rewrite_both_) {
return outprops &
~(kODeterministic | kNonODeterministic | kString | kILabelSorted |
kNotILabelSorted | kOLabelSorted | kNotOLabelSorted);
} else {
return outprops & ~(kODeterministic | kAcceptor | kString |
kILabelSorted | kNotILabelSorted);
}
} else if (match_type_ == MATCH_OUTPUT) {
if (rewrite_both_) {
return outprops &
~(kIDeterministic | kNonIDeterministic | kString | kILabelSorted |
kNotILabelSorted | kOLabelSorted | kNotOLabelSorted);
} else {
return outprops & ~(kIDeterministic | kAcceptor | kString |
kOLabelSorted | kNotOLabelSorted);
}
} else {
// Shouldn't ever get here.
FSTERROR() << "RhoMatcher: Bad match type: " << match_type_;
return 0;
}
}
// For any requested label, this matcher considers all transitions
// that match the label 'sigma_label' (sigma = "any"), and this in
// additions to transitions with the requested label. Each such sigma
// transition found is returned with the sigma_label rewritten as the
// requested label (both sides if an acceptor, or if 'rewrite_both' is
// true and both input and output labels of the found transition are
// 'sigma_label'). If 'sigma_label' is kNoLabel, this special
// matching is not done. SigmaMatcher is templated itself on a
// matcher, which is used to perform the underlying matching. By
// default, the underlying matcher is constructed by SigmaMatcher.
// The user can instead pass in this object; in that case,
// SigmaMatcher takes its ownership. No non-consuming symbols other
// than epsilon supported with the underlying template argument matcher.
template <class M>
class SigmaMatcher : public MatcherBase<typename M::Arc> {
public:
using FST = typename M::FST;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// This makes a copy of the FST (w/o 'matcher' arg).
SigmaMatcher(const FST &fst, MatchType match_type,
Label sigma_label = kNoLabel,
MatcherRewriteMode rewrite_mode = MATCHER_REWRITE_AUTO,
M *matcher = nullptr)
: matcher_(matcher ? matcher : new M(fst, match_type)),
match_type_(match_type),
sigma_label_(sigma_label),
error_(false),
state_(kNoStateId) {
if (match_type == MATCH_BOTH) {
FSTERROR() << "SigmaMatcher: Bad match type";
match_type_ = MATCH_NONE;
error_ = true;
}
if (sigma_label == 0) {
FSTERROR() << "SigmaMatcher: 0 cannot be used as sigma_label";
sigma_label_ = kNoLabel;
error_ = true;
}
if (rewrite_mode == MATCHER_REWRITE_AUTO) {
rewrite_both_ = fst.Properties(kAcceptor, true);
} else if (rewrite_mode == MATCHER_REWRITE_ALWAYS) {
rewrite_both_ = true;
} else {
rewrite_both_ = false;
}
}
// This doesn't copy the FST.
SigmaMatcher(const FST *fst, MatchType match_type,
Label sigma_label = kNoLabel,
MatcherRewriteMode rewrite_mode = MATCHER_REWRITE_AUTO,
M *matcher = nullptr)
: SigmaMatcher(*fst, match_type, sigma_label, rewrite_mode,
matcher ? matcher : new M(fst, match_type)) {}
// This makes a copy of the FST.
SigmaMatcher(const SigmaMatcher &matcher, bool safe = false)
: matcher_(new M(*matcher.matcher_, safe)),
match_type_(matcher.match_type_),
sigma_label_(matcher.sigma_label_),
rewrite_both_(matcher.rewrite_both_),
error_(matcher.error_),
state_(kNoStateId) {}
SigmaMatcher *Copy(bool safe = false) const override {
return new SigmaMatcher(*this, safe);
}
MatchType Type(bool test) const override { return matcher_->Type(test); }
void SetState(StateId s) final {
if (state_ == s) return;
state_ = s;
matcher_->SetState(s);
has_sigma_ =
(sigma_label_ != kNoLabel) ? matcher_->Find(sigma_label_) : false;
}
bool Find(Label match_label) final {
match_label_ = match_label;
if (match_label == sigma_label_ && sigma_label_ != kNoLabel) {
FSTERROR() << "SigmaMatcher::Find: bad label (sigma)";
error_ = true;
return false;
}
if (matcher_->Find(match_label)) {
sigma_match_ = kNoLabel;
return true;
} else if (has_sigma_ && match_label != 0 && match_label != kNoLabel &&
matcher_->Find(sigma_label_)) {
sigma_match_ = match_label;
return true;
} else {
return false;
}
}
bool Done() const final { return matcher_->Done(); }
const Arc &Value() const final {
if (sigma_match_ == kNoLabel) {
return matcher_->Value();
} else {
sigma_arc_ = matcher_->Value();
if (rewrite_both_) {
if (sigma_arc_.ilabel == sigma_label_) sigma_arc_.ilabel = sigma_match_;
if (sigma_arc_.olabel == sigma_label_) sigma_arc_.olabel = sigma_match_;
} else if (match_type_ == MATCH_INPUT) {
sigma_arc_.ilabel = sigma_match_;
} else {
sigma_arc_.olabel = sigma_match_;
}
return sigma_arc_;
}
}
void Next() final {
matcher_->Next();
if (matcher_->Done() && has_sigma_ && (sigma_match_ == kNoLabel) &&
(match_label_ > 0)) {
matcher_->Find(sigma_label_);
sigma_match_ = match_label_;
}
}
Weight Final(StateId s) const final { return matcher_->Final(s); }
ssize_t Priority(StateId s) final {
if (sigma_label_ != kNoLabel) {
SetState(s);
return has_sigma_ ? kRequirePriority : matcher_->Priority(s);
} else {
return matcher_->Priority(s);
}
}
const FST &GetFst() const override { return matcher_->GetFst(); }
uint64_t Properties(uint64_t props) const override;
uint32_t Flags() const override {
if (sigma_label_ == kNoLabel || match_type_ == MATCH_NONE) {
return matcher_->Flags();
}
return matcher_->Flags() | kRequireMatch;
}
Label SigmaLabel() const { return sigma_label_; }
private:
std::unique_ptr<M> matcher_;
MatchType match_type_; // Type of match requested.
Label sigma_label_; // Label that represents the sigma transition.
bool rewrite_both_; // Rewrite both sides when both are sigma_label_?
bool has_sigma_; // Are there sigmas at the current state?
Label sigma_match_; // Current label that matches sigma transition.
mutable Arc sigma_arc_; // Arc to return when sigma match.
Label match_label_; // Label being matched.
bool error_; // Error encountered?
StateId state_; // Matcher state.
};
template <class M>
inline uint64_t SigmaMatcher<M>::Properties(uint64_t inprops) const {
auto outprops = matcher_->Properties(inprops);
if (error_) outprops |= kError;
if (match_type_ == MATCH_NONE) {
return outprops;
} else if (rewrite_both_) {
return outprops & ~(kIDeterministic | kNonIDeterministic | kODeterministic |
kNonODeterministic | kILabelSorted | kNotILabelSorted |
kOLabelSorted | kNotOLabelSorted | kString);
} else if (match_type_ == MATCH_INPUT) {
return outprops & ~(kIDeterministic | kNonIDeterministic | kODeterministic |
kNonODeterministic | kILabelSorted | kNotILabelSorted |
kString | kAcceptor);
} else if (match_type_ == MATCH_OUTPUT) {
return outprops & ~(kIDeterministic | kNonIDeterministic | kODeterministic |
kNonODeterministic | kOLabelSorted | kNotOLabelSorted |
kString | kAcceptor);
} else {
// Shouldn't ever get here.
FSTERROR() << "SigmaMatcher: Bad match type: " << match_type_;
return 0;
}
}
// Flags for MultiEpsMatcher.
// Return multi-epsilon arcs for Find(kNoLabel).
inline constexpr uint32_t kMultiEpsList = 0x00000001;
// Return a kNolabel loop for Find(multi_eps).
inline constexpr uint32_t kMultiEpsLoop = 0x00000002;
// MultiEpsMatcher: allows treating multiple non-0 labels as
// non-consuming labels in addition to 0 that is always
// non-consuming. Precise behavior controlled by 'flags' argument. By
// default, the underlying matcher is constructed by
// MultiEpsMatcher. The user can instead pass in this object; in that
// case, MultiEpsMatcher takes its ownership iff 'own_matcher' is
// true.
template <class M>
class MultiEpsMatcher {
public:
using FST = typename M::FST;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// This makes a copy of the FST (w/o 'matcher' arg).
MultiEpsMatcher(const FST &fst, MatchType match_type,
uint32_t flags = (kMultiEpsLoop | kMultiEpsList),
M *matcher = nullptr, bool own_matcher = true)
: matcher_(matcher ? matcher : new M(fst, match_type)),
flags_(flags),
own_matcher_(matcher ? own_matcher : true) {
Init(match_type);
}
// This doesn't copy the FST.
MultiEpsMatcher(const FST *fst, MatchType match_type,
uint32_t flags = (kMultiEpsLoop | kMultiEpsList),
M *matcher = nullptr, bool own_matcher = true)
: matcher_(matcher ? matcher : new M(fst, match_type)),
flags_(flags),
own_matcher_(matcher ? own_matcher : true) {
Init(match_type);
}
// This makes a copy of the FST.
MultiEpsMatcher(const MultiEpsMatcher &matcher, bool safe = false)
: matcher_(new M(*matcher.matcher_, safe)),
flags_(matcher.flags_),
own_matcher_(true),
multi_eps_labels_(matcher.multi_eps_labels_),
loop_(matcher.loop_) {
loop_.nextstate = kNoStateId;
}
~MultiEpsMatcher() {
if (own_matcher_) delete matcher_;
}
MultiEpsMatcher *Copy(bool safe = false) const {
return new MultiEpsMatcher(*this, safe);
}
MatchType Type(bool test) const { return matcher_->Type(test); }
void SetState(StateId state) {
matcher_->SetState(state);
loop_.nextstate = state;
}
bool Find(Label label);
bool Done() const { return done_; }
const Arc &Value() const { return current_loop_ ? loop_ : matcher_->Value(); }
void Next() {
if (!current_loop_) {
matcher_->Next();
done_ = matcher_->Done();
if (done_ && multi_eps_iter_ != multi_eps_labels_.End()) {
++multi_eps_iter_;
while ((multi_eps_iter_ != multi_eps_labels_.End()) &&
!matcher_->Find(*multi_eps_iter_)) {
++multi_eps_iter_;
}
if (multi_eps_iter_ != multi_eps_labels_.End()) {
done_ = false;
} else {
done_ = !matcher_->Find(kNoLabel);
}
}
} else {
done_ = true;
}
}
const FST &GetFst() const { return matcher_->GetFst(); }
uint64_t Properties(uint64_t props) const {
return matcher_->Properties(props);
}
const M *GetMatcher() const { return matcher_; }
Weight Final(StateId s) const { return matcher_->Final(s); }
uint32_t Flags() const { return matcher_->Flags(); }
ssize_t Priority(StateId s) { return matcher_->Priority(s); }
void AddMultiEpsLabel(Label label) {
if (label == 0) {
FSTERROR() << "MultiEpsMatcher: Bad multi-eps label: 0";
} else {
multi_eps_labels_.Insert(label);
}
}
void RemoveMultiEpsLabel(Label label) {
if (label == 0) {
FSTERROR() << "MultiEpsMatcher: Bad multi-eps label: 0";
} else {
multi_eps_labels_.Erase(label);
}
}
void ClearMultiEpsLabels() { multi_eps_labels_.Clear(); }
private:
void Init(MatchType match_type) {
if (match_type == MATCH_INPUT) {
loop_.ilabel = kNoLabel;
loop_.olabel = 0;
} else {
loop_.ilabel = 0;
loop_.olabel = kNoLabel;
}
loop_.weight = Weight::One();
loop_.nextstate = kNoStateId;
}
M *matcher_;
uint32_t flags_;
bool own_matcher_; // Does this class delete the matcher?
// Multi-eps label set.
CompactSet<Label, kNoLabel> multi_eps_labels_;
typename CompactSet<Label, kNoLabel>::const_iterator multi_eps_iter_;
bool current_loop_; // Current arc is the implicit loop?
mutable Arc loop_; // For non-consuming symbols.
bool done_; // Matching done?
MultiEpsMatcher &operator=(const MultiEpsMatcher &) = delete;
};
template <class M>
inline bool MultiEpsMatcher<M>::Find(Label label) {
multi_eps_iter_ = multi_eps_labels_.End();
current_loop_ = false;
bool ret;
if (label == 0) {
ret = matcher_->Find(0);
} else if (label == kNoLabel) {
if (flags_ & kMultiEpsList) {
// Returns all non-consuming arcs (including epsilon).
multi_eps_iter_ = multi_eps_labels_.Begin();
while ((multi_eps_iter_ != multi_eps_labels_.End()) &&
!matcher_->Find(*multi_eps_iter_)) {
++multi_eps_iter_;
}
if (multi_eps_iter_ != multi_eps_labels_.End()) {
ret = true;
} else {
ret = matcher_->Find(kNoLabel);
}
} else {
// Returns all epsilon arcs.
ret = matcher_->Find(kNoLabel);
}
} else if ((flags_ & kMultiEpsLoop) &&
multi_eps_labels_.Find(label) != multi_eps_labels_.End()) {
// Returns implicit loop.
current_loop_ = true;
ret = true;
} else {
ret = matcher_->Find(label);
}
done_ = !ret;
return ret;
}
// This class discards any implicit matches (e.g., the implicit epsilon
// self-loops in the SortedMatcher). Matchers are most often used in
// composition/intersection where the implicit matches are needed
// e.g. for epsilon processing. However, if a matcher is simply being
// used to look-up explicit label matches, this class saves the user
// from having to check for and discard the unwanted implicit matches
// themselves.
template <class M>
class ExplicitMatcher : public MatcherBase<typename M::Arc> {
public:
using FST = typename M::FST;
using Arc = typename FST::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// This makes a copy of the FST.
ExplicitMatcher(const FST &fst, MatchType match_type, M *matcher = nullptr)
: matcher_(matcher ? matcher : new M(fst, match_type)),
match_type_(match_type),
error_(false) {}
// This doesn't copy the FST.
ExplicitMatcher(const FST *fst, MatchType match_type, M *matcher = nullptr)
: matcher_(matcher ? matcher : new M(fst, match_type)),
match_type_(match_type),
error_(false) {}
// This makes a copy of the FST.
ExplicitMatcher(const ExplicitMatcher &matcher, bool safe = false)
: matcher_(new M(*matcher.matcher_, safe)),
match_type_(matcher.match_type_),
error_(matcher.error_) {}
ExplicitMatcher *Copy(bool safe = false) const override {
return new ExplicitMatcher(*this, safe);
}
MatchType Type(bool test) const override { return matcher_->Type(test); }
void SetState(StateId s) final { matcher_->SetState(s); }
bool Find(Label label) final {
matcher_->Find(label);
CheckArc();
return !Done();
}
bool Done() const final { return matcher_->Done(); }
const Arc &Value() const final { return matcher_->Value(); }
void Next() final {
matcher_->Next();
CheckArc();
}
Weight Final(StateId s) const final { return matcher_->Final(s); }
ssize_t Priority(StateId s) final { return matcher_->Priority(s); }
const FST &GetFst() const final { return matcher_->GetFst(); }
uint64_t Properties(uint64_t inprops) const override {
return matcher_->Properties(inprops);
}
const M *GetMatcher() const { return matcher_.get(); }
uint32_t Flags() const override { return matcher_->Flags(); }
private:
// Checks current arc if available and explicit. If not available, stops. If
// not explicit, checks next ones.
void CheckArc() {
for (; !matcher_->Done(); matcher_->Next()) {
const auto label = match_type_ == MATCH_INPUT ? matcher_->Value().ilabel
: matcher_->Value().olabel;
if (label != kNoLabel) return;
}
}
std::unique_ptr<M> matcher_;
MatchType match_type_; // Type of match requested.
bool error_; // Error encountered?
};
// Generic matcher, templated on the FST definition.
//
// Here is a typical use:
//
// Matcher<StdFst> matcher(fst, MATCH_INPUT);
// matcher.SetState(state);
// if (matcher.Find(label))
// for (; !matcher.Done(); matcher.Next()) {
// auto &arc = matcher.Value();
// ...
// }
template <class F>
class Matcher {
public:
using FST = F;
using Arc = typename F::Arc;
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
// This makes a copy of the FST.
Matcher(const FST &fst, MatchType match_type)
: owned_fst_(fst.Copy()), base_(owned_fst_->InitMatcher(match_type)) {
if (!base_)
base_ =
std::make_unique<SortedMatcher<FST>>(owned_fst_.get(), match_type);
}
// This doesn't copy the FST.
Matcher(const FST *fst, MatchType match_type)
: base_(fst->InitMatcher(match_type)) {
if (!base_) base_ = std::make_unique<SortedMatcher<FST>>(fst, match_type);
}
// This makes a copy of the FST.
Matcher(const Matcher &matcher, bool safe = false)
: base_(matcher.base_->Copy(safe)) {}
// Takes ownership of the provided matcher.
explicit Matcher(MatcherBase<Arc> *base_matcher) : base_(base_matcher) {}
Matcher *Copy(bool safe = false) const { return new Matcher(*this, safe); }
MatchType Type(bool test) const { return base_->Type(test); }
void SetState(StateId s) { base_->SetState(s); }
bool Find(Label label) { return base_->Find(label); }
bool Done() const { return base_->Done(); }
const Arc &Value() const { return base_->Value(); }
void Next() { base_->Next(); }
const FST &GetFst() const { return down_cast<const FST &>(base_->GetFst()); }
uint64_t Properties(uint64_t props) const { return base_->Properties(props); }
Weight Final(StateId s) const { return base_->Final(s); }
uint32_t Flags() const { return base_->Flags() & kMatcherFlags; }
ssize_t Priority(StateId s) { return base_->Priority(s); }
private:
std::unique_ptr<const FST> owned_fst_;
std::unique_ptr<MatcherBase<Arc>> base_;
};
} // namespace fst
#endif // FST_MATCHER_H_