You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

322 lines
13 KiB

// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Functions and classes to create a partition of states.
#ifndef FST_PARTITION_H_
#define FST_PARTITION_H_
#include <algorithm>
#include <cstddef>
#include <type_traits>
#include <vector>
#include <fst/queue.h>
namespace fst {
namespace internal {
template <typename T>
class PartitionIterator;
// Defines a partitioning of elements, used to represent equivalence classes
// for FST operations like minimization. T must be a signed integer type.
//
// The elements are numbered from 0 to num_elements - 1.
// Initialize(num_elements) sets up the class for a given number of elements.
// We maintain a partition of these elements into classes. The classes are also
// numbered from zero; you can add a class with AddClass(), or add them in bulk
// with AllocateClasses(num_classes). Initially the elements are not assigned
// to any class; you set up the initial mapping from elements to classes by
// calling Add(element_id, class_id). You can also move an element to a
// different class by calling Move(element_id, class_id).
//
// We also support a rather specialized interface that allows you to efficiently
// split classes in the Hopcroft minimization algorithm. This maintains a
// binary partition of each class. Let's call these, rather arbitrarily, the
// 'yes' subset and the 'no' subset of each class, and assume that by default,
// each element of a class is in its 'no' subset. When one calls
// SplitOn(element_id), element_id is moved to the 'yes' subset of its class.
// (If it was already in the 'yes' set, it just stays there). The aim is to
// enable (later) splitting the class in two in time no greater than the time
// already spent calling SplitOn() for that class. We keep a list of the classes
// which have nonempty 'yes' sets, as visited_classes_. When one calls
// FinalizeSplit(Queue *l), for each class in visited_classes_ whose 'yes'
// and 'no' sets are both nonempty, it will create a new class consisting of
// the smaller of the two subsets (and this class will be added to the queue),
// and the old class will now be the larger of the two subsets. This call also
// resets all the yes/no partitions so that everything is in the 'no' subsets.
//
// One cannot use the Move() function if SplitOn() has been called without
// a subsequent call to FinalizeSplit()
template <typename T>
class Partition {
static_assert(std::is_signed_v<T> && std::is_integral_v<T>,
"T must be a signed integer type");
public:
Partition() = default;
explicit Partition(T num_elements) { Initialize(num_elements); }
// Creates an empty partition for num_elements. This means that the elements
// are not assigned to a class (i.e class_index = -1); you should set up the
// number of classes using AllocateClasses() or AddClass(), and allocate each
// element to a class by calling Add(element, class_id).
void Initialize(size_t num_elements) {
elements_.resize(num_elements);
classes_.reserve(num_elements);
classes_.clear();
yes_counter_ = 1;
}
// Adds a class; returns new number of classes.
T AddClass() {
auto num_classes = classes_.size();
classes_.resize(num_classes + 1);
return num_classes;
}
// Adds 'num_classes' new (empty) classes.
void AllocateClasses(T num_classes) {
classes_.resize(classes_.size() + num_classes);
}
// Adds element_id to class_id. element_id should already have been allocated
// by calling Initialize(num_elements)---or the constructor taking
// num_elements---with num_elements > element_id. element_id must not
// currently be a member of any class; once elements have been added to a
// class, use the Move() method to move them from one class to another.
void Add(T element_id, T class_id) {
auto &this_element = elements_[element_id];
auto &this_class = classes_[class_id];
++this_class.size;
// Adds the element to the 'no' subset of the class.
auto no_head = this_class.no_head;
if (no_head >= 0) elements_[no_head].prev_element = element_id;
this_class.no_head = element_id;
this_element.class_id = class_id;
// Adds to the 'no' subset of the class.
this_element.yes = 0;
this_element.next_element = no_head;
this_element.prev_element = -1;
}
// Moves element_id from 'no' subset of its current class to 'no' subset of
// class class_id. This may not work correctly if you have called SplitOn()
// [for any element] and haven't subsequently called FinalizeSplit().
void Move(T element_id, T class_id) {
auto elements = &(elements_[0]);
auto &element = elements[element_id];
auto &old_class = classes_[element.class_id];
--old_class.size;
// Excises the element from the 'no' list of its old class, where it is
// assumed to be.
if (element.prev_element >= 0) {
elements[element.prev_element].next_element = element.next_element;
} else {
old_class.no_head = element.next_element;
}
if (element.next_element >= 0) {
elements[element.next_element].prev_element = element.prev_element;
}
// Adds to new class.
Add(element_id, class_id);
}
// Moves element_id to the 'yes' subset of its class if it was in the 'no'
// subset, and marks the class as having been visited.
void SplitOn(T element_id) {
auto elements = &(elements_[0]);
auto &element = elements[element_id];
if (element.yes == yes_counter_) {
return; // Already in the 'yes' set; nothing to do.
}
auto class_id = element.class_id;
auto &this_class = classes_[class_id];
// Excises the element from the 'no' list of its class.
if (element.prev_element >= 0) {
elements[element.prev_element].next_element = element.next_element;
} else {
this_class.no_head = element.next_element;
}
if (element.next_element >= 0) {
elements[element.next_element].prev_element = element.prev_element;
}
// Adds the element to the 'yes' list.
if (this_class.yes_head >= 0) {
elements[this_class.yes_head].prev_element = element_id;
} else {
visited_classes_.push_back(class_id);
}
element.yes = yes_counter_;
element.next_element = this_class.yes_head;
element.prev_element = -1;
this_class.yes_head = element_id;
this_class.yes_size++;
}
// This should be called after one has possibly called SplitOn for one or more
// elements, thus moving those elements to the 'yes' subset for their class.
// For each class that has a nontrivial split (i.e., it's not the case that
// all members are in the 'yes' or 'no' subset), this function creates a new
// class containing the smaller of the two subsets of elements, leaving the
// larger group of elements in the old class. The identifier of the new class
// will be added to the queue provided as the pointer L. This method then
// moves all elements to the 'no' subset of their class.
template <class Queue>
void FinalizeSplit(Queue *queue) {
for (const auto &visited_class : visited_classes_) {
const auto new_class = SplitRefine(visited_class);
if (new_class != -1 && queue) queue->Enqueue(new_class);
}
visited_classes_.clear();
// Incrementation sets all the 'yes' members of the elements to false.
++yes_counter_;
}
const T ClassId(T element_id) const { return elements_[element_id].class_id; }
const size_t ClassSize(T class_id) const { return classes_[class_id].size; }
const T NumClasses() const { return classes_.size(); }
private:
friend class PartitionIterator<T>;
// Information about a given element.
struct Element {
T class_id; // Class ID of this element.
T yes; // This is to be interpreted as a bool, true if it's in the
// 'yes' set of this class. The interpretation as bool is
// (yes == yes_counter_ ? true : false).
T next_element; // Next element in the 'no' list or 'yes' list of this
// class, whichever of the two we belong to (think of
// this as the 'next' in a doubly-linked list, although
// it is an index into the elements array). Negative
// values corresponds to null.
T prev_element; // Previous element in the 'no' or 'yes' doubly linked
// list. Negative values corresponds to null.
};
// Information about a given class.
struct Class {
Class() : size(0), yes_size(0), no_head(-1), yes_head(-1) {}
T size; // Total number of elements in this class ('no' plus 'yes'
// subsets).
T yes_size; // Total number of elements of 'yes' subset of this class.
T no_head; // Index of head element of doubly-linked list in 'no' subset.
// Everything is in the 'no' subset until you call SplitOn().
// -1 means no element.
T yes_head; // Index of head element of doubly-linked list in 'yes' subset.
// -1 means no element.
};
// This method, called from FinalizeSplit(), checks whether a class has to
// be split (a class will be split only if its 'yes' and 'no' subsets are
// both nonempty, but one can assume that since this function was called, the
// 'yes' subset is nonempty). It splits by taking the smaller subset and
// making it a new class, and leaving the larger subset of elements in the
// 'no' subset of the old class. It returns the new class if created, or -1
// if none was created.
T SplitRefine(T class_id) {
auto yes_size = classes_[class_id].yes_size;
auto size = classes_[class_id].size;
auto no_size = size - yes_size;
if (no_size == 0) {
// All members are in the 'yes' subset, so we don't have to create a new
// class, just move them all to the 'no' subset.
classes_[class_id].no_head = classes_[class_id].yes_head;
classes_[class_id].yes_head = -1;
classes_[class_id].yes_size = 0;
return -1;
} else {
auto new_class_id = classes_.size();
classes_.resize(classes_.size() + 1);
auto &old_class = classes_[class_id];
auto &new_class = classes_[new_class_id];
// The new_class will have the values from the constructor.
if (no_size < yes_size) {
// Moves the 'no' subset to new class ('no' subset).
new_class.no_head = old_class.no_head;
new_class.size = no_size;
// And makes the 'yes' subset of the old class ('no' subset).
old_class.no_head = old_class.yes_head;
old_class.yes_head = -1;
old_class.size = yes_size;
old_class.yes_size = 0;
} else {
// Moves the 'yes' subset to the new class (to the 'no' subset)
new_class.size = yes_size;
new_class.no_head = old_class.yes_head;
// Retains only the 'no' subset in the old class.
old_class.size = no_size;
old_class.yes_size = 0;
old_class.yes_head = -1;
}
auto elements = &(elements_[0]);
// Updates the 'class_id' of all the elements we moved.
for (auto e = new_class.no_head; e >= 0; e = elements[e].next_element) {
elements[e].class_id = new_class_id;
}
return new_class_id;
}
}
// elements_[i] contains all info about the i'th element.
std::vector<Element> elements_;
// classes_[i] contains all info about the i'th class.
std::vector<Class> classes_;
// Set of visited classes to be used in split refine.
std::vector<T> visited_classes_;
// yes_counter_ is used in interpreting the 'yes' members of class Element.
// If element.yes == yes_counter_, we interpret that element as being in the
// 'yes' subset of its class. This allows us to, in effect, set all those
// bools to false at a stroke by incrementing yes_counter_.
T yes_counter_;
};
// Iterates over members of the 'no' subset of a class in a partition. (When
// this is used, everything is in the 'no' subset).
template <typename T>
class PartitionIterator {
public:
using Element = typename Partition<T>::Element;
PartitionIterator(const Partition<T> &partition, T class_id)
: partition_(partition),
element_id_(partition_.classes_[class_id].no_head),
class_id_(class_id) {}
bool Done() { return element_id_ < 0; }
const T Value() { return element_id_; }
void Next() { element_id_ = partition_.elements_[element_id_].next_element; }
void Reset() { element_id_ = partition_.classes_[class_id_].no_head; }
private:
const Partition<T> &partition_;
T element_id_;
T class_id_;
};
} // namespace internal
} // namespace fst
#endif // FST_PARTITION_H_