// Copyright 2005-2024 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the 'License');
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an 'AS IS' BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// See www.openfst.org for extensive documentation on this weighted
|
|
// finite-state transducer library.
|
|
//
|
|
// Cartesian power weight semiring operation definitions.
|
|
|
|
#ifndef FST_POWER_WEIGHT_H_
|
|
#define FST_POWER_WEIGHT_H_
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <random>
|
|
#include <string>
|
|
|
|
#include <fst/tuple-weight.h>
|
|
#include <fst/weight.h>
|
|
|
|
namespace fst {
|
|
|
|
// Cartesian power semiring: W ^ n
|
|
//
|
|
// Forms:
|
|
// - a left semimodule when W is a left semiring,
|
|
// - a right semimodule when W is a right semiring,
|
|
// - a bisemimodule when W is a semiring,
|
|
// the free semimodule of rank n over W
|
|
// The Times operation is overloaded to provide the left and right scalar
|
|
// products.
|
|
template <class W, size_t n>
|
|
class PowerWeight : public TupleWeight<W, n> {
|
|
public:
|
|
using ReverseWeight = PowerWeight<typename W::ReverseWeight, n>;
|
|
|
|
PowerWeight() = default;
|
|
|
|
explicit PowerWeight(const TupleWeight<W, n> &weight)
|
|
: TupleWeight<W, n>(weight) {}
|
|
|
|
template <class Iterator>
|
|
PowerWeight(Iterator begin, Iterator end) : TupleWeight<W, n>(begin, end) {}
|
|
|
|
// Initialize component `index` to `weight`; initialize all other components
|
|
// to `default_weight`
|
|
PowerWeight(size_t index, const W &weight,
|
|
const W &default_weight = W::Zero())
|
|
: TupleWeight<W, n>(index, weight, default_weight) {}
|
|
|
|
static const PowerWeight &Zero() {
|
|
static const PowerWeight zero(TupleWeight<W, n>::Zero());
|
|
return zero;
|
|
}
|
|
|
|
static const PowerWeight &One() {
|
|
static const PowerWeight one(TupleWeight<W, n>::One());
|
|
return one;
|
|
}
|
|
|
|
static const PowerWeight &NoWeight() {
|
|
static const PowerWeight no_weight(TupleWeight<W, n>::NoWeight());
|
|
return no_weight;
|
|
}
|
|
|
|
static const std::string &Type() {
|
|
static const std::string *const type =
|
|
new std::string(W::Type() + "_^" + std::to_string(n));
|
|
return *type;
|
|
}
|
|
|
|
static constexpr uint64_t Properties() {
|
|
return W::Properties() &
|
|
(kLeftSemiring | kRightSemiring | kCommutative | kIdempotent);
|
|
}
|
|
|
|
PowerWeight Quantize(float delta = kDelta) const {
|
|
return PowerWeight(TupleWeight<W, n>::Quantize(delta));
|
|
}
|
|
|
|
ReverseWeight Reverse() const {
|
|
return ReverseWeight(TupleWeight<W, n>::Reverse());
|
|
}
|
|
};
|
|
|
|
// Semiring plus operation.
|
|
template <class W, size_t n>
|
|
inline PowerWeight<W, n> Plus(const PowerWeight<W, n> &w1,
|
|
const PowerWeight<W, n> &w2) {
|
|
PowerWeight<W, n> result;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result.SetValue(i, Plus(w1.Value(i), w2.Value(i)));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Semiring times operation.
|
|
template <class W, size_t n>
|
|
inline PowerWeight<W, n> Times(const PowerWeight<W, n> &w1,
|
|
const PowerWeight<W, n> &w2) {
|
|
PowerWeight<W, n> result;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result.SetValue(i, Times(w1.Value(i), w2.Value(i)));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Semiring divide operation.
|
|
template <class W, size_t n>
|
|
inline PowerWeight<W, n> Divide(const PowerWeight<W, n> &w1,
|
|
const PowerWeight<W, n> &w2,
|
|
DivideType type = DIVIDE_ANY) {
|
|
PowerWeight<W, n> result;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result.SetValue(i, Divide(w1.Value(i), w2.Value(i), type));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Semimodule left scalar product.
|
|
template <class W, size_t n>
|
|
inline PowerWeight<W, n> Times(const W &scalar,
|
|
const PowerWeight<W, n> &weight) {
|
|
PowerWeight<W, n> result;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result.SetValue(i, Times(scalar, weight.Value(i)));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Semimodule right scalar product.
|
|
template <class W, size_t n>
|
|
inline PowerWeight<W, n> Times(const PowerWeight<W, n> &weight,
|
|
const W &scalar) {
|
|
PowerWeight<W, n> result;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result.SetValue(i, Times(weight.Value(i), scalar));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Semimodule dot product.
|
|
template <class W, size_t n>
|
|
inline W DotProduct(const PowerWeight<W, n> &w1, const PowerWeight<W, n> &w2) {
|
|
W result(W::Zero());
|
|
for (size_t i = 0; i < n; ++i) {
|
|
result = Plus(result, Times(w1.Value(i), w2.Value(i)));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// This function object generates weights over the Cartesian power of rank
|
|
// n over the underlying weight. This is intended primarily for testing.
|
|
template <class W, size_t n>
|
|
class WeightGenerate<PowerWeight<W, n>> {
|
|
public:
|
|
using Weight = PowerWeight<W, n>;
|
|
using Generate = WeightGenerate<W>;
|
|
|
|
explicit WeightGenerate(uint64_t seed = std::random_device()(),
|
|
bool allow_zero = true)
|
|
: generate_(seed, allow_zero) {}
|
|
|
|
Weight operator()() const {
|
|
Weight result;
|
|
for (size_t i = 0; i < n; ++i) result.SetValue(i, generate_());
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const Generate generate_;
|
|
};
|
|
|
|
} // namespace fst
|
|
|
|
#endif // FST_POWER_WEIGHT_H_
|