You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

229 lines
7.4 KiB

// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Cartesian power weight semiring operation definitions, using
// SparseTupleWeight as underlying representation.
#ifndef FST_SPARSE_POWER_WEIGHT_H_
#define FST_SPARSE_POWER_WEIGHT_H_
#include <climits>
#include <cstddef>
#include <cstdint>
#include <random>
#include <string>
#include <fst/sparse-tuple-weight.h>
#include <fst/weight.h>
namespace fst {
// Sparse cartesian power semiring: W ^ n
//
// Forms:
//
// - a left semimodule when W is a left semiring,
// - a right semimodule when W is a right semiring,
// - a bisemimodule when W is a semiring,
// the free semimodule of rank n over W
//
// The Times operation is overloaded to provide the left and right scalar
// products.
//
// K is the key value type. kNoKey (-1) is reserved for internal use
template <class W, class K = int>
class SparsePowerWeight : public SparseTupleWeight<W, K> {
public:
using Base = SparseTupleWeight<W, K>;
using ReverseWeight = SparsePowerWeight<typename W::ReverseWeight, K>;
SparsePowerWeight() = default;
explicit SparsePowerWeight(const Base &weight) : Base(weight) {}
template <class Iterator>
SparsePowerWeight(Iterator begin, Iterator end) : Base(begin, end) {}
// Initialize component `key` to `weight`, with `default_weight` for all
// other components.
SparsePowerWeight(const K &key, const W &weight,
const W &default_weight = W::Zero())
: Base(key, weight, default_weight) {}
static const SparsePowerWeight &Zero() {
static const SparsePowerWeight zero(Base::Zero());
return zero;
}
static const SparsePowerWeight &One() {
static const SparsePowerWeight one(Base::One());
return one;
}
static const SparsePowerWeight &NoWeight() {
static const SparsePowerWeight no_weight(Base::NoWeight());
return no_weight;
}
// Overide this: Overwrite the Type method to reflect the key type if using
// a non-default key type.
static const std::string &Type() {
static const std::string *const type = [] {
std::string type = W::Type() + "_^n";
if (sizeof(K) != sizeof(uint32_t)) {
type += "_" + std::to_string(CHAR_BIT * sizeof(K));
}
return new std::string(type);
}();
return *type;
}
static constexpr uint64_t Properties() {
return W::Properties() &
(kLeftSemiring | kRightSemiring | kCommutative | kIdempotent);
}
SparsePowerWeight Quantize(float delta = kDelta) const {
return SparsePowerWeight(Base::Quantize(delta));
}
ReverseWeight Reverse() const { return ReverseWeight(Base::Reverse()); }
};
template <class W, class K, class M>
inline SparsePowerWeight<W, K> SparsePowerWeightMap(
const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2,
const M &operator_mapper) {
SparsePowerWeight<W, K> result;
SparseTupleWeightMap(&result, w1, w2, operator_mapper);
return result;
}
// Semimodule plus operation.
template <class W, class K>
inline SparsePowerWeight<W, K> Plus(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) {
return Plus(v1, v2);
});
}
// Semimodule minus operation.
template <class W, class K>
inline SparsePowerWeight<W, K> Minus(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) {
return Minus(v1, v2);
});
}
// Semimodule times operation.
template <class W, class K>
inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) {
return Times(v1, v2);
});
}
// Semimodule divide operation.
template <class W, class K>
inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2,
DivideType type = DIVIDE_ANY) {
return SparsePowerWeightMap(w1, w2,
[type](const K &k, const W &v1, const W &v2) {
return Divide(v1, v2, type);
});
}
// Semimodule dot product operation.
template <class W, class K>
inline const W &DotProduct(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2) {
const SparsePowerWeight<W, K> product = Times(w1, w2);
W result(W::Zero());
for (SparseTupleWeightIterator<W, K> it(product); !it.Done(); it.Next()) {
result = Plus(result, it.Value().second);
}
return result;
}
template <class W, class K>
inline bool ApproxEqual(const SparsePowerWeight<W, K> &w1,
const SparsePowerWeight<W, K> &w2,
float delta = kDelta) {
auto result = SparsePowerWeightMap(
w1, w2, [delta](const K &k, const W &v1, const W &v2) {
return ApproxEqual(v1, v2, delta) ? W::One() : W::Zero();
});
return result == SparsePowerWeight<W, K>::One();
}
template <class W, class K>
inline SparsePowerWeight<W, K> Times(const W &k,
const SparsePowerWeight<W, K> &w2) {
const SparseTupleWeight<W, K> t2(k);
const SparsePowerWeight<W, K> w1(t2);
return Times(w1, w2);
}
template <class W, class K>
inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
const W &k) {
const SparseTupleWeight<W, K> t2(k);
const SparsePowerWeight<W, K> w2(t2);
return Times(w1, w2);
}
template <class W, class K>
inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
const W &k,
DivideType divide_type = DIVIDE_ANY) {
const SparseTupleWeight<W, K> t2(k);
const SparsePowerWeight<W, K> w2(t2);
return Divide(w1, w2, divide_type);
}
// This function object generates weights over the Cartesian power of rank
// n over the underlying weight. This is intended primarily for testing.
template <class W, class K>
class WeightGenerate<SparsePowerWeight<W, K>> {
public:
using Weight = SparsePowerWeight<W, K>;
using Generate = WeightGenerate<W>;
explicit WeightGenerate(uint64_t seed = std::random_device()(),
bool allow_zero = true, size_t sparse_power_rank = 3)
: generate_(seed, allow_zero), sparse_power_rank_(sparse_power_rank) {}
Weight operator()() const {
Weight weight;
for (size_t i = 1; i <= sparse_power_rank_; ++i) {
weight.PushBack(i, generate_(), true);
}
return weight;
}
private:
const Generate generate_;
const size_t sparse_power_rank_;
};
} // namespace fst
#endif // FST_SPARSE_POWER_WEIGHT_H_