// Copyright 2005-2024 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the 'License');
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an 'AS IS' BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// See www.openfst.org for extensive documentation on this weighted
|
|
// finite-state transducer library.
|
|
//
|
|
// Cartesian power weight semiring operation definitions, using
|
|
// SparseTupleWeight as underlying representation.
|
|
|
|
#ifndef FST_SPARSE_POWER_WEIGHT_H_
|
|
#define FST_SPARSE_POWER_WEIGHT_H_
|
|
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <random>
|
|
#include <string>
|
|
|
|
#include <fst/sparse-tuple-weight.h>
|
|
#include <fst/weight.h>
|
|
|
|
namespace fst {
|
|
|
|
// Sparse cartesian power semiring: W ^ n
|
|
//
|
|
// Forms:
|
|
//
|
|
// - a left semimodule when W is a left semiring,
|
|
// - a right semimodule when W is a right semiring,
|
|
// - a bisemimodule when W is a semiring,
|
|
// the free semimodule of rank n over W
|
|
//
|
|
// The Times operation is overloaded to provide the left and right scalar
|
|
// products.
|
|
//
|
|
// K is the key value type. kNoKey (-1) is reserved for internal use
|
|
template <class W, class K = int>
|
|
class SparsePowerWeight : public SparseTupleWeight<W, K> {
|
|
public:
|
|
using Base = SparseTupleWeight<W, K>;
|
|
using ReverseWeight = SparsePowerWeight<typename W::ReverseWeight, K>;
|
|
|
|
SparsePowerWeight() = default;
|
|
|
|
explicit SparsePowerWeight(const Base &weight) : Base(weight) {}
|
|
|
|
template <class Iterator>
|
|
SparsePowerWeight(Iterator begin, Iterator end) : Base(begin, end) {}
|
|
|
|
// Initialize component `key` to `weight`, with `default_weight` for all
|
|
// other components.
|
|
SparsePowerWeight(const K &key, const W &weight,
|
|
const W &default_weight = W::Zero())
|
|
: Base(key, weight, default_weight) {}
|
|
|
|
static const SparsePowerWeight &Zero() {
|
|
static const SparsePowerWeight zero(Base::Zero());
|
|
return zero;
|
|
}
|
|
|
|
static const SparsePowerWeight &One() {
|
|
static const SparsePowerWeight one(Base::One());
|
|
return one;
|
|
}
|
|
|
|
static const SparsePowerWeight &NoWeight() {
|
|
static const SparsePowerWeight no_weight(Base::NoWeight());
|
|
return no_weight;
|
|
}
|
|
|
|
// Overide this: Overwrite the Type method to reflect the key type if using
|
|
// a non-default key type.
|
|
static const std::string &Type() {
|
|
static const std::string *const type = [] {
|
|
std::string type = W::Type() + "_^n";
|
|
if (sizeof(K) != sizeof(uint32_t)) {
|
|
type += "_" + std::to_string(CHAR_BIT * sizeof(K));
|
|
}
|
|
return new std::string(type);
|
|
}();
|
|
return *type;
|
|
}
|
|
|
|
static constexpr uint64_t Properties() {
|
|
return W::Properties() &
|
|
(kLeftSemiring | kRightSemiring | kCommutative | kIdempotent);
|
|
}
|
|
|
|
SparsePowerWeight Quantize(float delta = kDelta) const {
|
|
return SparsePowerWeight(Base::Quantize(delta));
|
|
}
|
|
|
|
ReverseWeight Reverse() const { return ReverseWeight(Base::Reverse()); }
|
|
};
|
|
|
|
template <class W, class K, class M>
|
|
inline SparsePowerWeight<W, K> SparsePowerWeightMap(
|
|
const SparsePowerWeight<W, K> &w1, const SparsePowerWeight<W, K> &w2,
|
|
const M &operator_mapper) {
|
|
SparsePowerWeight<W, K> result;
|
|
SparseTupleWeightMap(&result, w1, w2, operator_mapper);
|
|
return result;
|
|
}
|
|
|
|
// Semimodule plus operation.
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Plus(const SparsePowerWeight<W, K> &w1,
|
|
const SparsePowerWeight<W, K> &w2) {
|
|
return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) {
|
|
return Plus(v1, v2);
|
|
});
|
|
}
|
|
|
|
// Semimodule minus operation.
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Minus(const SparsePowerWeight<W, K> &w1,
|
|
const SparsePowerWeight<W, K> &w2) {
|
|
return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) {
|
|
return Minus(v1, v2);
|
|
});
|
|
}
|
|
|
|
// Semimodule times operation.
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
|
|
const SparsePowerWeight<W, K> &w2) {
|
|
return SparsePowerWeightMap(w1, w2, [](const K &k, const W &v1, const W &v2) {
|
|
return Times(v1, v2);
|
|
});
|
|
}
|
|
|
|
// Semimodule divide operation.
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
|
|
const SparsePowerWeight<W, K> &w2,
|
|
DivideType type = DIVIDE_ANY) {
|
|
return SparsePowerWeightMap(w1, w2,
|
|
[type](const K &k, const W &v1, const W &v2) {
|
|
return Divide(v1, v2, type);
|
|
});
|
|
}
|
|
|
|
// Semimodule dot product operation.
|
|
template <class W, class K>
|
|
inline const W &DotProduct(const SparsePowerWeight<W, K> &w1,
|
|
const SparsePowerWeight<W, K> &w2) {
|
|
const SparsePowerWeight<W, K> product = Times(w1, w2);
|
|
W result(W::Zero());
|
|
for (SparseTupleWeightIterator<W, K> it(product); !it.Done(); it.Next()) {
|
|
result = Plus(result, it.Value().second);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <class W, class K>
|
|
inline bool ApproxEqual(const SparsePowerWeight<W, K> &w1,
|
|
const SparsePowerWeight<W, K> &w2,
|
|
float delta = kDelta) {
|
|
auto result = SparsePowerWeightMap(
|
|
w1, w2, [delta](const K &k, const W &v1, const W &v2) {
|
|
return ApproxEqual(v1, v2, delta) ? W::One() : W::Zero();
|
|
});
|
|
return result == SparsePowerWeight<W, K>::One();
|
|
}
|
|
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Times(const W &k,
|
|
const SparsePowerWeight<W, K> &w2) {
|
|
const SparseTupleWeight<W, K> t2(k);
|
|
const SparsePowerWeight<W, K> w1(t2);
|
|
return Times(w1, w2);
|
|
}
|
|
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Times(const SparsePowerWeight<W, K> &w1,
|
|
const W &k) {
|
|
const SparseTupleWeight<W, K> t2(k);
|
|
const SparsePowerWeight<W, K> w2(t2);
|
|
return Times(w1, w2);
|
|
}
|
|
|
|
template <class W, class K>
|
|
inline SparsePowerWeight<W, K> Divide(const SparsePowerWeight<W, K> &w1,
|
|
const W &k,
|
|
DivideType divide_type = DIVIDE_ANY) {
|
|
const SparseTupleWeight<W, K> t2(k);
|
|
const SparsePowerWeight<W, K> w2(t2);
|
|
return Divide(w1, w2, divide_type);
|
|
}
|
|
|
|
// This function object generates weights over the Cartesian power of rank
|
|
// n over the underlying weight. This is intended primarily for testing.
|
|
template <class W, class K>
|
|
class WeightGenerate<SparsePowerWeight<W, K>> {
|
|
public:
|
|
using Weight = SparsePowerWeight<W, K>;
|
|
using Generate = WeightGenerate<W>;
|
|
|
|
explicit WeightGenerate(uint64_t seed = std::random_device()(),
|
|
bool allow_zero = true, size_t sparse_power_rank = 3)
|
|
: generate_(seed, allow_zero), sparse_power_rank_(sparse_power_rank) {}
|
|
|
|
Weight operator()() const {
|
|
Weight weight;
|
|
for (size_t i = 1; i <= sparse_power_rank_; ++i) {
|
|
weight.PushBack(i, generate_(), true);
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
private:
|
|
const Generate generate_;
|
|
const size_t sparse_power_rank_;
|
|
};
|
|
|
|
} // namespace fst
|
|
|
|
#endif // FST_SPARSE_POWER_WEIGHT_H_
|