You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

240 lines
7.7 KiB

// Copyright 2005-2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the 'License');
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an 'AS IS' BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// See www.openfst.org for extensive documentation on this weighted
// finite-state transducer library.
//
// Class to determine whether a given (final) state can be reached from some
// other given state.
#ifndef FST_STATE_REACHABLE_H_
#define FST_STATE_REACHABLE_H_
#include <cstddef>
#include <cstdlib>
#include <vector>
#include <fst/log.h>
#include <fst/connect.h>
#include <fst/dfs-visit.h>
#include <fst/fst.h>
#include <fst/interval-set.h>
#include <fst/properties.h>
#include <fst/util.h>
#include <fst/vector-fst.h>
namespace fst {
// Computes the (final) states reachable from a given state in an FST. After
// this visitor has been called, a final state f can be reached from a state
// s iff (*isets)[s].Member(state2index[f]) is true, where (*isets[s]) is a
// set of half-open interval of final state indices and state2index[f] maps from
// a final state to its index. If state2index is empty, it is filled-in with
// suitable indices. If it is non-empty, those indices are used; in this case,
// the final states must have out-degree 0.
template <class Arc, class I = typename Arc::StateId, class S = IntervalSet<I>>
class IntervalReachVisitor {
public:
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using Index = I;
using ISet = S;
using Interval = typename ISet::Interval;
IntervalReachVisitor(const Fst<Arc> &fst, std::vector<S> *isets,
std::vector<Index> *state2index)
: fst_(fst),
isets_(isets),
state2index_(state2index),
index_(state2index->empty() ? 1 : -1),
error_(false) {
isets_->clear();
}
void InitVisit(const Fst<Arc> &) { error_ = false; }
bool InitState(StateId s, StateId r) {
while (isets_->size() <= s) isets_->push_back(S());
while (state2index_->size() <= s) state2index_->push_back(-1);
if (fst_.Final(s) != Weight::Zero()) {
// Create tree interval.
auto *intervals = (*isets_)[s].MutableIntervals();
if (index_ < 0) { // Uses state2index_ map to set index.
if (fst_.NumArcs(s) > 0) {
FSTERROR() << "IntervalReachVisitor: state2index map must be empty "
<< "for this FST";
error_ = true;
return false;
}
const auto index = (*state2index_)[s];
if (index < 0) {
FSTERROR() << "IntervalReachVisitor: state2index map incomplete";
error_ = true;
return false;
}
intervals->push_back(Interval(index, index + 1));
} else { // Use pre-order index.
intervals->push_back(Interval(index_, index_ + 1));
(*state2index_)[s] = index_++;
}
}
return true;
}
constexpr bool TreeArc(StateId, const Arc &) const { return true; }
bool BackArc(StateId s, const Arc &arc) {
FSTERROR() << "IntervalReachVisitor: Cyclic input";
error_ = true;
return false;
}
bool ForwardOrCrossArc(StateId s, const Arc &arc) {
// Non-tree interval.
(*isets_)[s].Union((*isets_)[arc.nextstate]);
return true;
}
void FinishState(StateId s, StateId p, const Arc *) {
if (index_ >= 0 && fst_.Final(s) != Weight::Zero()) {
auto *intervals = (*isets_)[s].MutableIntervals();
(*intervals)[0].end = index_; // Updates tree interval end.
}
(*isets_)[s].Normalize();
if (p != kNoStateId) {
(*isets_)[p].Union((*isets_)[s]); // Propagates intervals to parent.
}
}
void FinishVisit() {}
bool Error() const { return error_; }
private:
const Fst<Arc> &fst_;
std::vector<ISet> *isets_;
std::vector<Index> *state2index_;
Index index_;
bool error_;
};
// Tests reachability of final states from a given state. To test for
// reachability from a state s, first do SetState(s). Then a final state f can
// be reached from state s of FST iff Reach(f) is true. The input can be cyclic,
// but no cycle may contain a final state.
template <class Arc, class I = typename Arc::StateId, class S = IntervalSet<I>>
class StateReachable {
public:
using Label = typename Arc::Label;
using StateId = typename Arc::StateId;
using Weight = typename Arc::Weight;
using Index = I;
using ISet = S;
using Interval = typename ISet::Interval;
explicit StateReachable(const Fst<Arc> &fst) : error_(false) {
if (fst.Properties(kAcyclic, true)) {
AcyclicStateReachable(fst);
} else {
CyclicStateReachable(fst);
}
}
explicit StateReachable(const StateReachable<Arc> &reachable) {
FSTERROR() << "Copy constructor for state reachable class "
<< "not implemented.";
error_ = true;
}
// Sets current state.
void SetState(StateId s) { s_ = s; }
// Can reach this final state from current state?
bool Reach(StateId s) {
if (s >= state2index_.size()) return false;
const auto i = state2index_[s];
if (i < 0) {
FSTERROR() << "StateReachable: State non-final: " << s;
error_ = true;
return false;
}
return isets_[s_].Member(i);
}
// Access to the state-to-index mapping. Unassigned states have index -1.
std::vector<Index> &State2Index() { return state2index_; }
// Access to the interval sets. These specify the reachability to the final
// states as intervals of the final state indices.
const std::vector<ISet> &IntervalSets() { return isets_; }
bool Error() const { return error_; }
private:
void AcyclicStateReachable(const Fst<Arc> &fst) {
IntervalReachVisitor<Arc, StateId, ISet> reach_visitor(fst, &isets_,
&state2index_);
DfsVisit(fst, &reach_visitor);
if (reach_visitor.Error()) error_ = true;
}
void CyclicStateReachable(const Fst<Arc> &fst) {
// Finds state reachability on the acyclic condensation FST.
VectorFst<Arc> cfst;
std::vector<StateId> scc;
Condense(fst, &cfst, &scc);
StateReachable reachable(cfst);
if (reachable.Error()) {
error_ = true;
return;
}
// Gets the number of states per SCC.
std::vector<size_t> nscc;
for (StateId s = 0; s < scc.size(); ++s) {
const auto c = scc[s];
while (c >= nscc.size()) nscc.push_back(0);
++nscc[c];
}
// Constructs the interval sets and state index mapping for the original
// FST from the condensation FST.
state2index_.resize(scc.size(), -1);
isets_.resize(scc.size());
for (StateId s = 0; s < scc.size(); ++s) {
const auto c = scc[s];
isets_[s] = reachable.IntervalSets()[c];
state2index_[s] = reachable.State2Index()[c];
// Checks that each final state in an input FST is not contained in a
// cycle (i.e., not in a non-trivial SCC).
if (cfst.Final(c) != Weight::Zero() && nscc[c] > 1) {
FSTERROR() << "StateReachable: Final state contained in a cycle";
error_ = true;
return;
}
}
}
StateId s_; // Current state.
std::vector<ISet> isets_; // Interval sets per state.
std::vector<Index> state2index_; // Finds index for a final state.
bool error_;
StateReachable &operator=(const StateReachable &) = delete;
};
} // namespace fst
#endif // FST_STATE_REACHABLE_H_