You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

208 lines
7.9 KiB

// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "decoder/ctc_prefix_beam_search.h"
#include <algorithm>
#include <tuple>
#include <unordered_map>
#include <utility>
#include "utils/log.h"
#include "../utils/wn_utils.h"
namespace wenet {
CtcPrefixBeamSearch::CtcPrefixBeamSearch(
const CtcPrefixBeamSearchOptions& opts,
const std::shared_ptr<ContextGraph>& context_graph)
: opts_(opts), context_graph_(context_graph) {
Reset();
}
void CtcPrefixBeamSearch::Reset() {
hypotheses_.clear();
likelihood_.clear();
cur_hyps_.clear();
viterbi_likelihood_.clear();
times_.clear();
outputs_.clear();
abs_time_step_ = 0;
PrefixScore prefix_score;
prefix_score.s = 0.0;
prefix_score.ns = -kFloatMax;
prefix_score.v_s = 0.0;
prefix_score.v_ns = 0.0;
std::vector<int> empty;
cur_hyps_[empty] = prefix_score;
outputs_.emplace_back(empty);
hypotheses_.emplace_back(empty);
likelihood_.emplace_back(prefix_score.total_score());
times_.emplace_back(empty);
}
static bool PrefixScoreCompare(
const std::pair<std::vector<int>, PrefixScore>& a,
const std::pair<std::vector<int>, PrefixScore>& b) {
return a.second.total_score() > b.second.total_score();
}
void CtcPrefixBeamSearch::UpdateHypotheses(
const std::vector<std::pair<std::vector<int>, PrefixScore>>& hpys) {
cur_hyps_.clear();
outputs_.clear();
hypotheses_.clear();
likelihood_.clear();
viterbi_likelihood_.clear();
times_.clear();
for (auto& item : hpys) {
cur_hyps_[item.first] = item.second;
hypotheses_.emplace_back(item.first);
outputs_.emplace_back(std::move(item.first));
likelihood_.emplace_back(item.second.total_score());
viterbi_likelihood_.emplace_back(item.second.viterbi_score());
times_.emplace_back(item.second.times());
}
}
// Please refer https://robin1001.github.io/2020/12/11/ctc-search
// for how CTC prefix beam search works, and there is a simple graph demo in
// it.
void CtcPrefixBeamSearch::Search(const std::vector<std::vector<float>>& logp) {
if (logp.size() == 0) return;
int first_beam_size =
std::min(static_cast<int>(logp[0].size()), opts_.first_beam_size);
for (int t = 0; t < logp.size(); ++t, ++abs_time_step_) {
const std::vector<float>& logp_t = logp[t];
std::unordered_map<std::vector<int>, PrefixScore, PrefixHash> next_hyps;
// 1. First beam prune, only select topk candidates
std::vector<float> topk_score;
std::vector<int32_t> topk_index;
TopK(logp_t, first_beam_size, &topk_score, &topk_index);
// 2. Token passing
for (int i = 0; i < topk_index.size(); ++i) {
int id = topk_index[i];
auto prob = topk_score[i];
for (const auto& it : cur_hyps_) {
const std::vector<int>& prefix = it.first;
const PrefixScore& prefix_score = it.second;
// If prefix doesn't exist in next_hyps, next_hyps[prefix] will insert
// PrefixScore(-inf, -inf) by default, since the default constructor
// of PrefixScore will set fields s(blank ending score) and
// ns(none blank ending score) to -inf, respectively.
if (id == opts_.blank) {
// Case 0: *a + ε => *a
PrefixScore& next_score = next_hyps[prefix];
next_score.s = LogAdd(next_score.s, prefix_score.score() + prob);
next_score.v_s = prefix_score.viterbi_score() + prob;
next_score.times_s = prefix_score.times();
// Prefix not changed, copy the context from prefix.
if (context_graph_ && !next_score.has_context) {
next_score.CopyContext(prefix_score);
next_score.has_context = true;
}
} else if (!prefix.empty() && id == prefix.back()) {
// Case 1: *a + a => *a
PrefixScore& next_score1 = next_hyps[prefix];
next_score1.ns = LogAdd(next_score1.ns, prefix_score.ns + prob);
if (next_score1.v_ns < prefix_score.v_ns + prob) {
next_score1.v_ns = prefix_score.v_ns + prob;
if (next_score1.cur_token_prob < prob) {
next_score1.cur_token_prob = prob;
next_score1.times_ns = prefix_score.times_ns;
CHECK_GT(next_score1.times_ns.size(), 0);
next_score1.times_ns.back() = abs_time_step_;
}
}
if (context_graph_ && !next_score1.has_context) {
next_score1.CopyContext(prefix_score);
next_score1.has_context = true;
}
// Case 2: *aε + a => *aa
std::vector<int> new_prefix(prefix);
new_prefix.emplace_back(id);
PrefixScore& next_score2 = next_hyps[new_prefix];
next_score2.ns = LogAdd(next_score2.ns, prefix_score.s + prob);
if (next_score2.v_ns < prefix_score.v_s + prob) {
next_score2.v_ns = prefix_score.v_s + prob;
next_score2.cur_token_prob = prob;
next_score2.times_ns = prefix_score.times_s;
next_score2.times_ns.emplace_back(abs_time_step_);
}
if (context_graph_ && !next_score2.has_context) {
// Prefix changed, calculate the context score.
next_score2.UpdateContext(context_graph_, prefix_score, id);
next_score2.has_context = true;
}
} else {
// Case 3: *a + b => *ab, *aε + b => *ab
std::vector<int> new_prefix(prefix);
new_prefix.emplace_back(id);
PrefixScore& next_score = next_hyps[new_prefix];
next_score.ns = LogAdd(next_score.ns, prefix_score.score() + prob);
if (next_score.v_ns < prefix_score.viterbi_score() + prob) {
next_score.v_ns = prefix_score.viterbi_score() + prob;
next_score.cur_token_prob = prob;
next_score.times_ns = prefix_score.times();
next_score.times_ns.emplace_back(abs_time_step_);
}
if (context_graph_ && !next_score.has_context) {
// Calculate the context score.
next_score.UpdateContext(context_graph_, prefix_score, id);
next_score.has_context = true;
}
}
}
}
// 3. Second beam prune, only keep top n best paths
std::vector<std::pair<std::vector<int>, PrefixScore>> arr(next_hyps.begin(),
next_hyps.end());
int second_beam_size =
std::min(static_cast<int>(arr.size()), opts_.second_beam_size);
std::nth_element(arr.begin(), arr.begin() + second_beam_size, arr.end(),
PrefixScoreCompare);
arr.resize(second_beam_size);
std::sort(arr.begin(), arr.end(), PrefixScoreCompare);
// 4. Update cur_hyps_ and get new result
UpdateHypotheses(arr);
}
}
void CtcPrefixBeamSearch::FinalizeSearch() {
if (context_graph_ == nullptr) return;
CHECK_EQ(hypotheses_.size(), cur_hyps_.size());
CHECK_EQ(hypotheses_.size(), likelihood_.size());
// We should backoff the context score/state when the context is
// not fully matched at the last time.
for (const auto& prefix : hypotheses_) {
PrefixScore& prefix_score = cur_hyps_[prefix];
if (prefix_score.context_state != 0) {
prefix_score.UpdateContext(context_graph_, prefix_score, -1);
}
}
std::vector<std::pair<std::vector<int>, PrefixScore>> arr(cur_hyps_.begin(),
cur_hyps_.end());
std::sort(arr.begin(), arr.end(), PrefixScoreCompare);
// Update cur_hyps_ and get new result
UpdateHypotheses(arr);
}
} // namespace wenet