You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

159 lines
5.4 KiB

// Copyright (c) 2017 Personal (Binbin Zhang)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef FRONTEND_FEATURE_PIPELINE_H_
#define FRONTEND_FEATURE_PIPELINE_H_
#include <limits>
#include <mutex>
#include <queue>
#include <string>
#include <vector>
#include "fbank.h"
#include "utils/blocking_queue.h"
namespace wenet {
enum class FeatureType {
kKaldi = 0,
kWhisper,
};
struct FeaturePipelineConfig {
int num_bins;
int sample_rate;
int frame_length;
int frame_shift;
float low_freq;
bool pre_emphasis;
bool scale_input_to_unit;
float log_floor;
LogBase log_base;
WindowType window_type;
MelType mel_type;
NormalizationType norm_type;
FeaturePipelineConfig(int num_bins, int sample_rate,
FeatureType feat_type = FeatureType::kKaldi)
: num_bins(num_bins), // 80 dim fbank
sample_rate(sample_rate) { // 16k sample rate
frame_length = sample_rate / 1000 * 25; // frame length 25ms
frame_shift = sample_rate / 1000 * 10; // frame shift 10ms
if (feat_type == FeatureType::kKaldi) {
low_freq = 20.0;
pre_emphasis = true;
log_floor = std::numeric_limits<float>::epsilon();
log_base = LogBase::kBaseE;
window_type = WindowType::kPovey;
mel_type = MelType::kHTK;
norm_type = NormalizationType::kKaldi;
scale_input_to_unit = false;
} else if (feat_type == FeatureType::kWhisper) {
low_freq = 0.0;
pre_emphasis = false;
log_floor = 1e-10;
log_base = LogBase::kBase10;
window_type = WindowType::kHanning;
mel_type = MelType::kSlaney;
scale_input_to_unit = true;
norm_type = NormalizationType::kWhisper;
}
}
void Info() const {
fst::LOG(INFO) << "feature pipeline config"
<< " num_bins " << num_bins << " frame_length " << frame_length
<< " frame_shift " << frame_shift << " low_freq " << low_freq
<< " preemphasis " << pre_emphasis << " log_floor " << log_floor
<< " log_base " << int(log_base) << " window_type "
<< int(window_type) << " mel_type " << int(mel_type)
<< " norm_type " << int(norm_type);
}
};
// Typically, FeaturePipeline is used in two threads: one thread A calls
// AcceptWaveform() to add raw wav data and set_input_finished() to notice
// the end of input wav, another thread B (decoder thread) calls Read() to
// consume features.So a BlockingQueue is used to make this class thread safe.
// The Read() is designed as a blocking method when there is no feature
// in feature_queue_ and the input is not finished.
// See bin/decoder_main.cc, websocket/websocket_server.cc and
// decoder/torch_asr_decoder.cc for usage
class FeaturePipeline {
public:
explicit FeaturePipeline(const FeaturePipelineConfig& config);
// The feature extraction is done in AcceptWaveform().
void AcceptWaveform(const float* pcm, const int size);
void AcceptWaveform(const int16_t* pcm, const int size);
// Current extracted frames number.
int num_frames() const { return num_frames_; }
int feature_dim() const { return feature_dim_; }
const FeaturePipelineConfig& config() const { return config_; }
// The caller should call this method when speech input is end.
// Never call AcceptWaveform() after calling set_input_finished() !
void set_input_finished();
bool input_finished() const { return input_finished_; }
// Return False if input is finished and no feature could be read.
// Return True if a feature is read.
// This function is a blocking method. It will block the thread when
// there is no feature in feature_queue_ and the input is not finished.
bool ReadOne(std::vector<float>* feat);
// Read #num_frames frame features.
// Return False if less than #num_frames features are read and the
// input is finished.
// Return True if #num_frames features are read.
// This function is a blocking method when there is no feature
// in feature_queue_ and the input is not finished.
bool Read(int num_frames, std::vector<std::vector<float>>* feats);
void Reset();
bool IsLastFrame(int frame) const {
return input_finished_ && (frame == num_frames_ - 1);
}
int NumQueuedFrames() const { return feature_queue_.Size(); }
private:
const FeaturePipelineConfig& config_;
int feature_dim_;
Fbank fbank_;
BlockingQueue<std::vector<float>> feature_queue_;
int num_frames_;
bool input_finished_;
// The feature extraction is done in AcceptWaveform().
// This waveform sample points are consumed by frame size.
// The residual waveform sample points after framing are
// kept to be used in next AcceptWaveform() calling.
std::vector<float> remained_wav_;
// Used to block the Read when there is no feature in feature_queue_
// and the input is not finished.
mutable std::mutex mutex_;
std::condition_variable finish_condition_;
};
} // namespace wenet
#endif // FRONTEND_FEATURE_PIPELINE_H_